
TSM_AdvEmbSof
Bootloader

Serge Ayer | 04.12.2023 | Cours MSE

Good enough, soon enough

2

• How do we make software correct enough, without going
bankrupt ?!
– Follow a good plan
– Develop and test efficiently

• Perform design and code reviews
• Developing without testing is not efficient

– Everything is iterative:
• Be able to improve the development process
• Be able to improve the software

What is a good plan?

3

• Start with customer requirements
• Design the building blocks of the system

– What are the system tasks and modules?
• Add missing requirements and constraints
• Apply a good development process

– Integrate testing from the beginning
– Plan unit and integration testing, preferably automated
– Apply continuous integration and delivery (CI/CD)

Every software version has a lifecycle

4

• Everything is iterative !
• Requirements will evolve over time:

– Design needs to be adapted
– Test plan needs to be adapted

• Enhancements needs to be developed and deployed
– Adaptations (new requirements)
– Corrections (including preventive maintenance)

What about deploying updates to embedded systems?

5

• Billions of microcontrollers are shipped and deployed every year
• How to make software enhancements to these microcontrollers:

– Cannot return the equipment to the manufacturer !
• Would you return your computer to its manufacturer for updating it ?

– While the update of some systems may be assisted by the users,
it is often not the case on embedded systems

– Very often, updates need to be deployed remotely
• Deploying updates on microcontrollers is done through a bootloader

application

What is a bootloader?

6

• It is an application (software)
• Primary purpose: allow a software/firmware to be

updated
• Without the use of specialized hardware

– No JTAG programmer !
• Can use different protocols for receiving the software

update

What does it take to develop a bootloader?

7

• Full understanding of
– How the microcontroller works
– How the memory is organized
– How the Flash memory is partitioned and can

be written/erased

Bootloader requirements

8

• Ability to switch or select the operating mode (application or
bootloader)
– How to enter bootloader mode?

• Communication interface (USB, network, …)
• Format of the update (hex, bin, …)
• Flash/EEPROM requirements (erase, write, read, map/location)
• Corruption protection (checksum)
• Security (protecting the bootloader and the application)

Bootloader process

9

Branch

Enter
bootloader?

Check active
application

Check for new
firmware

Apply new
firmware

Application

Run
application

Download
firmware

Y

N

Soft reset

Soft reset

Soft reset

Bootloader process

10

• The process can come in many different flavors
– Because there are many different scenarios

• Branching code
– In most cases, the bootloader is always executed for performing some basic system

functions (e.g. system integrity check).
– The branching code is thus included in the bootloader.
– The branching code makes the decision as whether the bootloader checks for system

integrity and for new firmware versions. It also makes the decision of installing a new
firmware.

• Application code
– Executed after the branching code and after integrity checks
– May host a task for downloading a new firmware – this task could also be performed by the

bootloader itself

Bootloader application

11

• The bootloader is not different from a standard application
• It has the capability of erasing and programing a new application in its place by

supporting the following commands
– Erase the flash
– Write the flash
– Exit / Restart (reboot while jumping to the application code).

• Depending on the scenario, it may need to access peripherals for carrying out the
bootloading functions

• Downloading a new firmware:
– May happen anytime over a network or based on a specific event (e.g. inserting a SD card or connecting

over a serial port).
– Is usually done as a task in the main application (in particular if the downloads happens through a network).
– May also be part of the bootloader application.

Memory model with a bootloader

12

• Mbed OS tools supports the following memory model
• When building the main application, it defines symbols

that can be used by the main application

Bootloader

Application
(main program)

BOOTLOADER_ADDR == Start of ROM

APPLICATION_ADDR == BOOTLOADER_ADDR + BOOTLOADER_SIZE

APPLICATION_ADDR + APPLICATION_SIZE

Code region

Application

Vector table

Optional
bootloader

Memory model with a bootloader

13

• Mbed OS tools supports the following memory model
• When building the bootloader application, it defines

symbols that can be used by the bootloader application
Code region

Application

Vector table

Optional
bootloader

Application
(Bootloader)

Reserved
(for main program)

APPLICATION_ADDR == Start of ROM

POST_APPLICATION_ADDR == APPLICATION_ADDR + APPLICATION_SIZE

POST_APPLICATION_ADDR + POST_APPLICATION_SIZE

Codelabs

14

• The bootloader principle
The bootloader principle

• Host a bootloader into your BikeComputer program
Modifying the BikeComputer program

• Creating your first Booloader Application
Your first Bootloader

https://advembsof.isc.heia-fr.ch/codelabs/bootloader#the-bootloader-principle
https://advembsof.isc.heia-fr.ch/codelabs/bootloader#modifying-your-bikecomputer-application-with-a-bootloader
https://advembsof.isc.heia-fr.ch/codelabs/bootloader#writing-your-first-bootloader-application

Checking application integrity

15

Adding metadata application header

16

• Metadata created and added at build time, including
– Header versioning
– Firmware versioning and size
– Firmware hash (signature, not encrypted)

• Metadata used by the bootloader
– For checking application integrity
– For installing candidate applications

Memory model with application header

17

Application
(Bootloader)

Application
header

BOOTLOADER_ADDR == Start of ROM

APPLICATION_ADDR == HEADER_ADDR + HEADER_SIZE

APPLICATION_ADDR + APPLICATION_SIZE

Active
application

HEADER_ADDR == BOOTLOADER_ADDR + APPLICATION_SIZE

• Mbed OS tools supports the following memory model
• When building the main application, it defines symbols

that can be used by the main application

Memory model with application header

18

Application
(Bootloader)

Reserved
(Application

Header)

APPLICATION_ADDR == Start of ROM

POST_APPLICATION_ADDR == HEADER_ADDR + HEADER_SIZE

POST_APPLICATION_ADDR + APPLICATION_SIZE
Reserved

(Main
Application)

HEADER_ADDR == BOOTLOADER_ADDR + APPLICATION_SIZE

• Mbed OS tools supports the following memory model
• When building the bootloader application, it defines

symbols that can be used by the bootloader application

Codelabs

19

• NOTE: you may need to copy the links below and paste
them in your browser (rather than simply open it by
clicking on it).

• Checking the active application integrity
Checking active application integrity

https://advembsof.isc.heia-fr.ch/codelabs/bootloader#checking-application-integrity-and-authenticity

Downloading firmware candidates

20

• Can be done using various protocols
– Over an IP network

• Can be operated from a centralized management system
– Over a BLE connection

• Through an IP gateway or through a local BLE connection
– With physical access

• For instance, over serial

• In all cases, an update client must be running in the application
– The client must watch for available updates
– It must download the firmware candidate and store it at an appropriate location
– Usually, several candidates can be stored on the target device
– Does NOT install the firmware – this is the job of the bootloader

Storing the firmware candidates

21

• Firmware candidates must be stored on non volatile memory.
• Non volatile memory (Flash) may be

– The Internal Flash
• If large enough
• Using the FlashIAP API on Mbed OS)

– Another Flash Memory
• Like the 64-Mbit Quad-SPI Flash memory of the DISCO target device
• Using the QuadSPI API on Mbed OS

https://os.mbed.com/docs/mbed-os/v6.5/apis/flash-iap.html
https://os.mbed.com/docs/mbed-os/v6.5/apis/spi-apis.html

Memory model with firmware candidates
(Internal Flash)

22

Application
(Bootloader)

Application
header

BOOTLOADER_ADDR == Start of ROM

APPLICATION_ADDR == HEADER_ADDR + HEADER_SIZE

MBED_CONF_UPDATE_CLIENT_STORAGE_ADDRESS

Active
application

HEADER_ADDR == BOOTLOADER_ADDR + APPLICATION_SIZE

Firmware
candidates

MBED_CONF_UPDATE_CLIENT_STORAGE_ADDRESS + MBED_CONF_UPDATE_CLIENT_STORAGE_SIZE

Codelabs

23

• NOTE: you may need to copy the links below and paste
them in your browser (rather than simply open it by
clicking on it).

• Downloading firmware candidates from the
BikeComputer program
Downloading and storing firmware candidates

• Checking for new firmware candidates and installing one
Installing a Firmware Candidate

https://advembsof.isc.heia-fr.ch/codelabs/bootloader#downloading-and-storing-firmware-candidates
https://advembsof.isc.heia-fr.ch/codelabs/bootloader#installing-a-firmware-candidate-at-boot-time

	Slide Number 1
	Good enough, soon enough
	What is a good plan?
	Every software version has a lifecycle
	What about deploying updates to embedded systems?
	What is a bootloader?
	What does it take to develop a bootloader?
	Bootloader requirements
	Bootloader process
	Bootloader process
	Bootloader application
	Memory model with a bootloader
	Memory model with a bootloader
	Codelabs
	Checking application integrity
	Adding metadata application header
	Memory model with application header
	Memory model with application header
	Codelabs
	Downloading firmware candidates
	Storing the firmware candidates
	Memory model with firmware candidates (Internal Flash)
	Codelabs

