
TSM_AdvEmbSof
Bootloader

Serge Ayer | 04.12.2023 | Cours MSE



Good enough, soon enough
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• How do we make software correct enough, without going 
bankrupt ?!
– Follow a good plan
– Develop and test efficiently

• Perform design and code reviews
• Developing without testing is not efficient

– Everything is iterative: 
• Be able to improve the development process
• Be able to improve the software



What is a good plan?
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• Start with customer requirements
• Design the building blocks of the system

– What are the system tasks and modules?
• Add missing requirements and constraints
• Apply a good development process

– Integrate testing from the beginning
– Plan unit and integration testing, preferably automated
– Apply continuous integration and delivery (CI/CD)



Every software version has a lifecycle
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• Everything is iterative !
• Requirements will evolve over time:

– Design needs to be adapted
– Test plan needs to be adapted

• Enhancements needs to be developed and deployed
– Adaptations (new requirements)
– Corrections (including preventive maintenance)



What about deploying updates to embedded systems?
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• Billions of microcontrollers are shipped and deployed every year
• How to make software enhancements to these microcontrollers:

– Cannot return the equipment to the manufacturer ! 
• Would you return your computer to its manufacturer for updating it ?

– While the update of some systems may be assisted by the users, 
it is often not the case on embedded systems

– Very often, updates need to be deployed remotely
• Deploying updates on microcontrollers is done through a bootloader 

application



What is a bootloader?
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• It is an application (software)
• Primary purpose: allow a software/firmware to be 

updated 
• Without the use of specialized hardware

– No JTAG programmer !
• Can use different protocols for receiving the software 

update



What does it take to develop a bootloader?
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• Full understanding of 
– How the microcontroller works
– How the memory is organized
– How the Flash memory is partitioned and can 

be written/erased



Bootloader requirements
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• Ability to switch or select the operating mode (application or 
bootloader)
– How to enter bootloader mode?

• Communication interface (USB, network, …)
• Format of the update (hex, bin, …)
• Flash/EEPROM requirements (erase, write, read, map/location)
• Corruption protection (checksum)
• Security (protecting the bootloader and the application)



Bootloader process
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Bootloader process
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• The process can come in many different flavors 
– Because there are many different scenarios

• Branching code
– In most cases, the bootloader is always executed for performing some basic system 

functions (e.g. system integrity check).
– The branching code is thus included in the bootloader.
– The branching code makes the decision as whether the bootloader checks for system 

integrity and for new firmware versions. It also makes the decision of installing a new 
firmware.

• Application code
– Executed after the branching code and after integrity checks
– May host a task for downloading a new firmware – this task could also be performed by the 

bootloader itself



Bootloader application
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• The bootloader is not different from a standard application
• It has the capability of erasing and programing a new application in its place by 

supporting the following commands
– Erase the flash
– Write the flash
– Exit / Restart (reboot while jumping to the application code).

• Depending on the scenario, it may need to access peripherals for carrying out the 
bootloading functions

• Downloading a new firmware:
– May happen anytime over a network or based on a specific event (e.g. inserting a SD card or connecting 

over a serial port).
– Is usually done as a task in the main application (in particular if the downloads happens through a network).
– May also be part of the bootloader application.



Memory model with a bootloader
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• Mbed OS tools supports the following memory model
• When building the main application, it defines symbols 

that can be used by the main application

Bootloader

Application
(main program)

BOOTLOADER_ADDR == Start of ROM

APPLICATION_ADDR == BOOTLOADER_ADDR + BOOTLOADER_SIZE

APPLICATION_ADDR + APPLICATION_SIZE

Code region

Application

Vector table

Optional 
bootloader



Memory model with a bootloader
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• Mbed OS tools supports the following memory model
• When building the bootloader application, it defines 

symbols that can be used by the bootloader application
Code region

Application

Vector table

Optional 
bootloader

Application
(Bootloader)

Reserved
(for main program)

APPLICATION_ADDR == Start of ROM

POST_APPLICATION_ADDR == APPLICATION_ADDR + APPLICATION_SIZE

POST_APPLICATION_ADDR + POST_APPLICATION_SIZE



Codelabs
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• The bootloader principle
The bootloader principle

• Host a bootloader into your BikeComputer program
Modifying the BikeComputer program

• Creating your first Booloader Application
Your first Bootloader

https://advembsof.isc.heia-fr.ch/codelabs/bootloader#the-bootloader-principle
https://advembsof.isc.heia-fr.ch/codelabs/bootloader#modifying-your-bikecomputer-application-with-a-bootloader
https://advembsof.isc.heia-fr.ch/codelabs/bootloader#writing-your-first-bootloader-application


Checking application integrity
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Adding metadata application header
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• Metadata created and added at build time, including
– Header versioning
– Firmware versioning and size
– Firmware hash (signature, not encrypted)

• Metadata used by the bootloader
– For checking application integrity
– For installing candidate applications



Memory model with application header
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Application
(Bootloader)

Application 
header

BOOTLOADER_ADDR == Start of ROM

APPLICATION_ADDR == HEADER_ADDR + HEADER_SIZE

APPLICATION_ADDR + APPLICATION_SIZE

Active 
application

HEADER_ADDR == BOOTLOADER_ADDR + APPLICATION_SIZE

• Mbed OS tools supports the following memory model
• When building the main application, it defines symbols 

that can be used by the main application



Memory model with application header
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Application
(Bootloader)

Reserved 
(Application 

Header)

APPLICATION_ADDR == Start of ROM

POST_APPLICATION_ADDR == HEADER_ADDR + HEADER_SIZE

POST_APPLICATION_ADDR + APPLICATION_SIZE
Reserved 

(Main 
Application)

HEADER_ADDR == BOOTLOADER_ADDR + APPLICATION_SIZE

• Mbed OS tools supports the following memory model
• When building the bootloader application, it defines 

symbols that can be used by the bootloader application



Codelabs
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• NOTE: you may need to copy the links below and paste 
them in your browser (rather than simply open it by 
clicking on it).

• Checking the active application integrity
Checking active application integrity

https://advembsof.isc.heia-fr.ch/codelabs/bootloader#checking-application-integrity-and-authenticity


Downloading firmware candidates
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• Can be done using various protocols
– Over an IP network

• Can be operated from a centralized management system
– Over a BLE connection

• Through an IP gateway or through a local BLE connection
– With physical access

• For instance, over serial

• In all cases, an update client must be running in the application
– The client must watch for available updates
– It must download the firmware candidate and store it at an appropriate location
– Usually, several candidates can be stored on the target device
– Does NOT install the firmware – this is the job of the bootloader



Storing the firmware candidates
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• Firmware candidates must be stored on non volatile memory.
• Non volatile memory (Flash) may be

– The Internal Flash
• If large enough
• Using the FlashIAP API on Mbed OS)

– Another Flash Memory
• Like the 64-Mbit Quad-SPI Flash memory of the DISCO target device
• Using the QuadSPI API on Mbed OS

https://os.mbed.com/docs/mbed-os/v6.5/apis/flash-iap.html
https://os.mbed.com/docs/mbed-os/v6.5/apis/spi-apis.html


Memory model with firmware candidates 
(Internal Flash)
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Application
(Bootloader)

Application 
header

BOOTLOADER_ADDR == Start of ROM

APPLICATION_ADDR == HEADER_ADDR + HEADER_SIZE

MBED_CONF_UPDATE_CLIENT_STORAGE_ADDRESS

Active 
application

HEADER_ADDR == BOOTLOADER_ADDR + APPLICATION_SIZE

Firmware 
candidates

MBED_CONF_UPDATE_CLIENT_STORAGE_ADDRESS + MBED_CONF_UPDATE_CLIENT_STORAGE_SIZE



Codelabs
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• NOTE: you may need to copy the links below and paste 
them in your browser (rather than simply open it by 
clicking on it).

• Downloading firmware candidates from the 
BikeComputer program
Downloading and storing firmware candidates

• Checking for new firmware candidates and installing one
Installing a Firmware Candidate

https://advembsof.isc.heia-fr.ch/codelabs/bootloader#downloading-and-storing-firmware-candidates
https://advembsof.isc.heia-fr.ch/codelabs/bootloader#installing-a-firmware-candidate-at-boot-time
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