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Tasks need memory

*  Computer memory is used for storing
— program code
— application data
— modified/computed data

«  Memory is usually organized in different sections
— Code or Text
« Binary instructions to be executed
* Usually read-only
* Program Counter (PC) points to the next instruction to be executed
— Static Data
+ Global/constant/static variables — shared between tasks/threads
— Heap
+ Dynamic allocated with malloc/free/new/delete
— Stack (FILO)
» Used for executing code, method/function calls and return
+ Position in Stack Pointer (SP)
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What Does Memory Management Do?

« Memory needs to be managed
— Both the OS and user tasks need memory.

« Allocation/Partition
— How to allocate memory sections specific to each use (code, static, dynamic).
— Done at build and at run time.

* Relocation
— Changing the memory space dynamically, ideally translation done by hardware.

* Protection
— lllegal reference to other processes’ memory should be detected and stopped at run time.
— Cortex-M tasks may implement a Memory Protection Unit (MPU).

* Sharing

— Several tasks/threads may access common parts of the memory
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Typical Program-Generation Flow

. The generation of program follows a typical development flow:
—  Compile -> Assemble -> Link -> Download

—  The generated executable file (or program image) is stored in the program memory (normally an on-chip flash memory), to be
fetched by the processor
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Compilation using Arm-Based Tools
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Compiler Stages

*  Pre-processing
— Replaces macros, defined by an initial hash-tag (#) in the code
— Merges all subfiles (.c/.cpp, .h) to one complete file

 Parser
— Reads in C code
—  Checks for syntax errors
— Forms intermediate code (tree representation)

« High-Level Optimizer: Modifies intermediate code (processor-independent)

Code Generator
— Creates assembly code step-by-step from each node of the intermediate code
— Allocates variable uses to registers

*  Low-Level Optimizer: Modifies assembly code (parts are processor-specific)
« Assembler: Creates object code (machine code)
« Linker/Loader: Creates executable image from object file
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Cortex-M Program Image

« What is a program image?

— The program image (sometimes also called the
executable file) refers to a piece of fully
integrated code that is ready to execute.

* In the Cortex-M, the program image
includes:

— Vector table: includes the starting addresses of
exceptions (vectors) and the value of the main stack
point (MSP)

—  C start-up routine
—  Program: application code and data

—  Clibrary code: program codes for C library functions
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Our Target Device Memory Map

OxEQOFFFFF
0xEOOFF000
0xEQOFEO00
0xE0043000
0xE0042000
0xE0041000
0xE0040000

PPB ROM table

Processor ROM table

Private Peripheral Bus

CTI

ETM

Reserved (TPIU)
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System

Private peripheral bus - External

Private peripheral bus - Internal

External device 1.0GB

OxFFFFFFFF

0xE0100000

0xE0040000

0xE0000000

0xA0000000

External RAM  1.0GB

0x6000000

Peripheral 0.5GB

0x40000000

SRAM 0.5GB

0x20000000

Code 0.5GB

Figure 2-1 System address map

x00000000

Table 6. Memory map and default device memory area attributes (continued)

Region

Boundary
address

Arm® Cortex® M7

Arm® Cortex® M4

Type

Execute
never

Attributes

Code

0x1FF20000 -
0x1FFFFFFF

Reserved

0x1FFOD000 -
0x1FF1FFFF

System Memory

Reserved

010048000 -
0xFEFFFFF

Reserved

0x10040000 -
0x10047FFF

SRAM3 (Alias)!

0x10020000 -
0x1003FFFF

SRAM2 (Alias)!

0x10000000 -
0x1001FFFF

SRAM1 (Alias)"

0x08200000 -
0xOFFFFFFF

Reserved

0x08100000 -
0:081FFFFF

Flash memory bank 2

0¥08000000 -
0x080FFFFF

Flash memory bank 1}

0x00010000 -
O0x07FFFFFF

Reserved

0x00000000 -
0xDD0OFFFF

ITCM

VTOR REMAP#

Normal

Wirite-
through

ol R =

. Alias to maintain Arm® Cortex®-M4 Harvard architecture.
. Flash memory bank 2 boundary is limited te 0x08100000 - 0x0817FFFF on STM32H745xG/STM32HT47xG.
. Flash memory bank 1 boundary is limited to 0x08000000 - 0x0807FFFF on STM32HT45xG/ISTM32HT47xG.
. Selectable boot memory alias.
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Cortex-M Program Image

° VeCtor table External Interrupts
. . 0x00000040
— Contains the starting addresses of e 0X0000003C
exceptions (vectors) and the value of the ER— OXLFFFFFFF Pendsv 000000038
main stack point (MSP) eserved
[ ] -
C Start Up COde P::C’Ftl;am COdj & svcall 0x0000002C
— Used to set up data memory and the orary code
initialization of values for global data e
. eserve
variables Vector table
— Is inserted by the compiler/linker 0x00000010
automatically, labeled as ‘ _main’ by the 0x00000000| Hard fault vecter | 0x0000000C
Arm Compiler, or ‘ start’ by the GNU C Global memory space NI vector 0x00000008
. . Reset vector 0x00000004
compiler —
Initial MSP value | 0x00000000
Address
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Cortex-M Program Image

 Program code

— Program code refers to the instructions
generated (application code) from the
application program and the application data

that includes:

¢ Initial values of variables: the local variables that are
initialized in functions or subroutines during program
execution time

* Constants: used in data values, address of peripherals,

character strings, etc.

—  Sometimes stored together in data blocks called literal
pools

—  Constant data such as lookup tables, graphics image data
(e.g., bit map) can be merged into the program images

« Clibrary code

— Object codes inserted into the program
image by linkers
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Program Image in Global Memory

« The program image is stored in the code region in global memory
— Up to 512 MB memory space range from 0x00000000 to Ox1FFFFFFF

On our target device 2 MB in two separate memory banks
— Usually implemented on non-volatile memory, such as on-chip FLASH memory

— Normally separated from program data, which is allocated in the SRAM region
(or data region)

External RAM

Peripherals

Mainly used for data memory, e.g., on-chip OXSFFFFFFE
SRAM, SDRAM SRAM Region

0x20000000

Ox1FFFFFFF
Mainly used for program image, e.g., on-chip
F LAS H 0x00000000

Global Memory Space

512MB

512MB

H_JH_J
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Codelab

« Understand your Bike Computer program image
The Bike Computer program image

* Understand the way a Mbed OS program is started and
how memory is initialized
The Boot Sequence and Memory Initialization
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https://advembsof.isc.heia-fr.ch/codelabs/memory/#the-program-image
https://advembsof.isc.heia-fr.ch/codelabs/memory/#the-boot-sequence-and-memory-initialization

The Mbed Memory Model

« It follows the Cortex-M Memory Model

It includes an additional optional bootloader

A bootloader is a program that loads Mbed OS when a board is
turned on.
Usually, the bootloader comes before the application in ROM and the
application starts immediately after the bootloader
A boot sequence can have several stages of bootloaders, leading to
an application.
* The different stages (including the application) may need to evolve over
time, to add features or bug-fixes.
Most boot sequences are composed of three stages:
* Boot selector (also known as root bootloader or stage zero bootloader):
does not get upgraded
« Bootloader: upgradable, with several versions stored on the device.
* Application: upgradable, with several versions stored on the device.
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How is Data Stored in RAM?

* Typically, the data can be divided into three
sections: static data, stack, and heap

— Static data: contains global variables and
static variables

— Stack: contains the temporary data for local
variables, parameter passing in function calls,
registers saving during exceptions, etc.

— Heap: contains the pieces of memory spaces
that are dynamically reserved by calloc()
malloc() or new calls.
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The Mbed Memory Model

High

* Inside RAM, you can distinguish two logical types: static
and dynamic memory.

«  Static memory: allocated at compile time:

Vector table (read and write)

Crash data RAM

Global data

Static data Memory

Stacks for default threads (main, timer, idle and Address
scheduler/ISR).

*  Dynamic memory is allocated at runtime:

Heap (dynamic data).
Stacks for user threads.

« Stack checking is turned on for all threads, and the kernel
errors if it detects an overflow condition.

Low
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ER_IROM!1

The Mbed Memory Model

 The stack and heap addresses and sizes are defined at build time
— They can be defined in either C language (with linker file) or assembly
language
« The linker also uses a scatter file that describes the location of the
different memory regions. This file contains the definitions of
— The Code Region (ER_IROM1)
— The RAM Region (RW_IRAM1)
— The Heap Region (ARM_LIB_HEAP)
— The Stack Region (MBED_RAM_START)
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Data Storage Through An Example

Zero-Initialized
static data

Initialized static data

NEEIE]

Heap data

Usually stored in volatile
memories, e.g. SRAM
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int a, b; Constant data

const char ¢c=123;

int d=31;

void main(void) { Initialization Data
int i;
nt *:E?:i: Startup Code
array =(int*)mallog(128);

" e =d + 7;: Program code
printf(”HeIIo!"‘){ .text

Runtime Library Code

Usually stored in non-
volatile memories
e.g. FLASH
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What Memory Does a Program Need?

« Can the information change?
— No: put it in read-only, nonvolatile memory for saving RAM
— Yes: put it in read/write memory

 How long does the data need to exist?
— Program scope: statically allocated
— Function/method scope: automatically allocated on the stack
— From explicit allocation to explicit deallocation: on the heap
— Always define the most restrictive scope
— Use dynamic allocation on the heap with care
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Codelab

* Understand what memory goes where
Static Memory Analysis Using memap

« Optimizing the memory usage of an application
Reducing memory usage
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https://advembsof.isc.heia-fr.ch/codelabs/memory/#static-memory-analysis-using-memap
https://advembsof.isc.heia-fr.ch/codelabs/memory/#reducing-memory-usage-by-tuning-the-mbed-os-configuration

Data And Memory

A number of standard data types are supported by the C/C++ language

 However, their implementation depends on the processor architecture and C/C++
compiler

* In Arm programming, the data size is referred to as byte, half word, word, and double
word:

— Byte: 8-bit
— Half word: 16-bit
— Word: 32-bit
— Double word: 64-bit
« The table in the next slide shows the implementation of different data types
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Data Types

DETERAY ] Size Signed Range Unsigned Range

char, int8_t, uint8 t Byte -128 to 127 0 to 255

short, int16_t, uintl6_t Half word -32768 to 32767 01065535

int, int32_t, uint32_t, long Word -2147483648 to 2147483647 0'to 4294967295
0 to 2%4-1

long long, int64 _t, uint64 t Double word

=263 t0 263-1

float Word

-3.4028234 x 10* to 3.4028234 x 10%

double, long double Double word

-1.7976931348623157 x103%8 t0 1.7976931348623157 x10308

pointers Word 0x00 to OxFFFFFFFF

enum Byte/ half word/ word Smallest possible data type
bool (C++), _bool(C) Byte True or false

wchar_t Half word 0 to 65535
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Class Qualifiers

Const Volatile Static
e Never written by program, e Can be changed outside of e Declared within function or
can be put in ROM to save normal program flow: ISR, method, retains value
RAM hardware register between function/method
invocations

¢ Declared within classes: the
field is instantiated once for
all class instances and the
value is retained for the
program lifetime

e Compiler must be careful
with optimizations

Hes-so
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Activation Record/Stack Frame

e Activation records are located
on the stack
— Calling a function creates
an activation record

— Returning from a function
deletes the activation record

 Automatic variables and
housekeeping information are
stored in a function’s activation

record
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Accessing Data

 What does it take to get a variable in memory

— It depends on location, which depends on storage
type (static, automatic, dynamic)

— So the associated cost/time is variable
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Memory Hierarchy

* Register: usually one CPU cycle to access

« Cache:
—  Static RAM
s «  Main Memory

Larger Size m — Dynamic RAM
Lower Cost

Lower Speed — Volatile data
Secondary
Memory

+ Secondary Memory: Flash/Hard disk
«  Tertiary Memory: Tape libraries
Tertiahy «  Temporal locality
«  Spatial locality

Memory

*  Memory Hierarchy — to exploit the memory
locality
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Codelab

« Understanding dynamic memory usage
Runtime memory tracing

* Understanding most common memory usage mistakes
Hunting for memory bugs
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https://advembsof.isc.heia-fr.ch/codelabs/memory/#runtime-memory-tracing
https://advembsof.isc.heia-fr.ch/codelabs/memory/#hunting-for-memory-bugs

Memory Protection Unit (MPU)

 What is the Memory Protection Unit (MPU) for ARM ?

Programmable unit

Allows privileged software such as OS kernels, to define memory access
permissions.

Monitors transactions, including instruction fetches and data accesses
Triggers a fault exception when an access violation is detected.

* The privileged software/OS kernel

Defines memory regions

Assigns memory access permission and memory attributes to each of them.
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Memory Protection Unit (Cortex-M4)
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Figure 1. STM32 Cortex-M4 implementation
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Memory Protection Unit (MPU)

* |tis a powerful component of a system for improving the system
security
— It can disallow the user mode/application software (i.e. the software running in
unprivileged mode) to access the critical regions of the memory.
« As example, the OS may do the following:
— Define a region of the memory, say from 0x4000 0000 to 0x4000_ FFFF

— Make this region accessible only while the processor code is running in privileged
mode

— Make this region as read-only
— Make this region as Execute-Never
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MPU Programming

« Through MPU registers, that can be read/written only while the processor is
at privileged access level.

» 8 regions of memories are permitted, identified by base address and size.

« Each region can have different 'access rights’ and MPU can be
enabled/disabled for each region.

« Each transaction from the processor is checked against the MPU
configuration.

— If the transaction's attribute matches the 'access rights' of the region, the transaction is
successful, and is produced at the processor's interface

— In case of a mismatch, an exception is generated, and the processor jumps to the
exceptional handler.
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MPU on Mbed OS

 Memory protection for Mbed OS is enabled automatically for devices
that support the MPU API.
« The MPU management functions provided in Mbed OS is limited to
turning off the memory protections if necessary
— Through Mbed MPU API (Mbed MPU Management)
 The memory protection in Mbed OS does the following:
— It prevents execution from RAM
— It prevents writing to ROM.

Hes-so
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https://os.mbed.com/docs/mbed-os/v6.15/apis/mpu-management.html

MPU on Mbed OS

* Mbed OS handles MPU management automatically in the following situations:
— Memory protection is enabled as part of the boot sequence.
— Memory protection is disabled when starting a new application.
— Memory protection is disabled while flash programming.

« RAM execute lock (ScopedRamExecutionLock)
— After boot, execution from RAM is not allowed.

— Applications/libraries requiring the ability to execute from RAM can enable this by acquiring
the RAM execution lock.

« ROM write lock (ScopedRomWriteLock)
— After boot, writing to ROM is not allowed.

— Application/libraries requiring the ability to writing to ROM can enable this by acquiring the
ROM write lock.
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