M s E MASTER OF SCIENCE
IN ENGINEERING
TSM_AdvEmbSof
Memory (Profiling, Optimisation)

swissunjversities Serge Ayer | 23.11.2023 | Cours MSE Helaésstg

Tasks need memory

* Computer memory is used for storing
— program code
— application data
— modified/computed data

« Memory is usually organized in different sections
— Code or Text
« Binary instructions to be executed
* Usually read-only
* Program Counter (PC) points to the next instruction to be executed
— Static Data
+ Global/constant/static variables — shared between tasks/threads
— Heap
+ Dynamic allocated with malloc/free/new/delete
— Stack (FILO)
» Used for executing code, method/function calls and return
+ Position in Stack Pointer (SP)

swissuniversities

Stack

l

Unused

Heap

Data
(Unintialized)

Data
(Initialized)

Code/Text

Read from the
Program

Initialized to zero

Read from
the Program

SO

Master

What Does Memory Management Do?

« Memory needs to be managed
— Both the OS and user tasks need memory.

« Allocation/Partition
— How to allocate memory sections specific to each use (code, static, dynamic).
— Done at build and at run time.

* Relocation
— Changing the memory space dynamically, ideally translation done by hardware.

* Protection
— lllegal reference to other processes’ memory should be detected and stopped at run time.
— Cortex-M tasks may implement a Memory Protection Unit (MPU).

* Sharing

— Several tasks/threads may access common parts of the memory

swissuniversities Hes:so
3 Master

Typical Program-Generation Flow

. The generation of program follows a typical development flow:
— Compile -> Assemble -> Link -> Download

— The generated executable file (or program image) is stored in the program memory (normally an on-chip flash memory), to be
fetched by the processor

Off-line Compilation

Processor

! -J
— Fetch
Instruction Fetch E (T]

Assemble Decode]

L 7
¢ Link / o Execute]

Assembly Code

Program Image s | 2022 ———— i
Data Input Data Output
Download —p> Processing _— >
Program Memory
swissuniversities Typical program-generation flow Hes -so

4 Master

Compilation using Arm-Based Tools

swissunjversities

C/C++

J

i

Assembly m

Object

Libraries

]

~s

Image

4
[oy |

C, C++
ASM files

Compile/assemble

.O Files
.S Files

Link

.AXF File
.LIB file

Executable

.BIN File
.HEX File
Disassembly File

Hes-so

Master

Compiler Stages

* Pre-processing
— Replaces macros, defined by an initial hash-tag (#) in the code
— Merges all subfiles (.c/.cpp, .h) to one complete file

 Parser
— Reads in C code
— Checks for syntax errors
— Forms intermediate code (tree representation)

« High-Level Optimizer: Modifies intermediate code (processor-independent)

Code Generator
— Creates assembly code step-by-step from each node of the intermediate code
— Allocates variable uses to registers

* Low-Level Optimizer: Modifies assembly code (parts are processor-specific)
« Assembler: Creates object code (machine code)
« Linker/Loader: Creates executable image from object file

swissuniversities Hes:so
6 Master

Cortex-M Program Image

« What is a program image?

— The program image (sometimes also called the
executable file) refers to a piece of fully
integrated code that is ready to execute.

* In the Cortex-M, the program image
includes:

— Vector table: includes the starting addresses of
exceptions (vectors) and the value of the main stack
point (MSP)

— C start-up routine
— Program: application code and data

— Clibrary code: program codes for C library functions

swissunjversities

Program
Image

-<

Vendor-specific memory

Private peripheral bus

External Device

External RAM

Peripherals

SRAM Region

Code region

Start-up routine &
Program code &
C library code

Vector table

Global memory space

0x40000000
OX3FFFFFFF

0x20000000
OXLFFFFFFF

0x00000000

External Interrupts

SysTick

PendSV

Reserved

SVCall

Reserved

Hard fault vector

NMI vector

Reset vector

Initial MSP value

0x00000040
0x0000003C

0x00000038

0x00000030
0x0000002C

0x00000010
0x0000000C
0x00000008

0x00000004
0x00000000

Address

Hes-so

Master

Our Target Device Memory Map

OxEQOFFFFF
0xEOOFF000
0xEQOFEO00
0xE0043000
0xE0042000
0xE0041000
0xE0040000

PPB ROM table

Processor ROM table

Private Peripheral Bus

CTI

ETM

Reserved (TPIU)

swissunjversities

T

System

Private peripheral bus - External

Private peripheral bus - Internal

External device 1.0GB

OxFFFFFFFF

0xE0100000

0xE0040000

0xE0000000

0xA0000000

External RAM 1.0GB

0x6000000

Peripheral 0.5GB

0x40000000

SRAM 0.5GB

0x20000000

Code 0.5GB

Figure 2-1 System address map

x00000000

Table 6. Memory map and default device memory area attributes (continued)

Region

Boundary
address

Arm® Cortex® M7

Arm® Cortex® M4

Type

Execute
never

Attributes

Code

0x1FF20000 -
0x1FFFFFFF

Reserved

0x1FFOD000 -
0x1FF1FFFF

System Memory

Reserved

010048000 -
0xFEFFFFF

Reserved

0x10040000 -
0x10047FFF

SRAM3 (Alias)!

0x10020000 -
0x1003FFFF

SRAM2 (Alias)!

0x10000000 -
0x1001FFFF

SRAM1 (Alias)"

0x08200000 -
0xOFFFFFFF

Reserved

0x08100000 -
0:081FFFFF

Flash memory bank 2

0¥08000000 -
0x080FFFFF

Flash memory bank 1}

0x00010000 -
O0x07FFFFFF

Reserved

0x00000000 -
0xDD0OFFFF

ITCM

VTOR REMAP#

Normal

Wirite-
through

ol R =

. Alias to maintain Arm® Cortex®-M4 Harvard architecture.
. Flash memory bank 2 boundary is limited te 0x08100000 - 0x0817FFFF on STM32H745xG/STM32HT47xG.
. Flash memory bank 1 boundary is limited to 0x08000000 - 0x0807FFFF on STM32HT45xG/ISTM32HT47xG.
. Selectable boot memory alias.

Hes-so

Master

Cortex-M Program Image

° VeCtor table External Interrupts
. . 0x00000040
— Contains the starting addresses of e 0X0000003C
exceptions (vectors) and the value of the ER— OXLFFFFFFF Pendsv 000000038
main stack point (MSP) eserved
[] -
C Start Up COde P::C’Ftl;am COdj & svcall 0x0000002C
— Used to set up data memory and the orary code
initialization of values for global data e
. eserve
variables Vector table
— Is inserted by the compiler/linker 0x00000010
automatically, labeled as ‘ _main’ by the 0x00000000| Hard fault vecter | 0x0000000C
Arm Compiler, or ‘ start’ by the GNU C Global memory space NI vector 0x00000008
. . Reset vector 0x00000004
compiler —
Initial MSP value | 0x00000000
Address
swissunjversities Hes:so

9 Master

Cortex-M Program Image

 Program code

— Program code refers to the instructions
generated (application code) from the
application program and the application data

that includes:

¢ Initial values of variables: the local variables that are
initialized in functions or subroutines during program
execution time

* Constants: used in data values, address of peripherals,

character strings, etc.

— Sometimes stored together in data blocks called literal
pools

— Constant data such as lookup tables, graphics image data
(e.g., bit map) can be merged into the program images

« Clibrary code

— Object codes inserted into the program
image by linkers

swissunjversities
10

Code region

Start-up routine &
Program code &
C library code

Vector table

Global memory space

OXLFFFFFFF

0x00000000

External Interrupts

SysTick

PendSv

Reserved

SvVCall

Reserved

Hard fault vector

NMI vector

Reset vector

Initial MSP value

0x00000040
0x0000003C

0x00000038

0x00000030
0x0000002C

0x00000010
0x0000000C
0x00000008

0x00000004
0x00000000

Address

Hes-so

Master

Program Image in Global Memory

« The program image is stored in the code region in global memory
— Up to 512 MB memory space range from 0x00000000 to Ox1FFFFFFF

On our target device 2 MB in two separate memory banks
— Usually implemented on non-volatile memory, such as on-chip FLASH memory

— Normally separated from program data, which is allocated in the SRAM region
(or data region)

External RAM

Peripherals

Mainly used for data memory, e.g., on-chip OXSFFFFFFE
SRAM, SDRAM SRAM Region

0x20000000

Ox1FFFFFFF
Mainly used for program image, e.g., on-chip
F LAS H 0x00000000

Global Memory Space

512MB

512MB

H_JH_J

swissuniversities Hes:so
11 Master

Codelab

« Understand your Bike Computer program image
The Bike Computer program image

* Understand the way a Mbed OS program is started and
how memory is initialized
The Boot Sequence and Memory Initialization

swissuniversities Hes:so
12 Master

https://advembsof.isc.heia-fr.ch/codelabs/memory/#the-program-image
https://advembsof.isc.heia-fr.ch/codelabs/memory/#the-boot-sequence-and-memory-initialization

The Mbed Memory Model

« It follows the Cortex-M Memory Model

It includes an additional optional bootloader

A bootloader is a program that loads Mbed OS when a board is
turned on.
Usually, the bootloader comes before the application in ROM and the
application starts immediately after the bootloader
A boot sequence can have several stages of bootloaders, leading to
an application.
* The different stages (including the application) may need to evolve over
time, to add features or bug-fixes.
Most boot sequences are composed of three stages:
* Boot selector (also known as root bootloader or stage zero bootloader):
does not get upgraded
« Bootloader: upgradable, with several versions stored on the device.
* Application: upgradable, with several versions stored on the device.

swissuniversities

13

Code region

Application

Vector table

Hes-so

Master

How is Data Stored in RAM?

* Typically, the data can be divided into three
sections: static data, stack, and heap

— Static data: contains global variables and
static variables

— Stack: contains the temporary data for local
variables, parameter passing in function calls,
registers saving during exceptions, etc.

— Heap: contains the pieces of memory spaces
that are dynamically reserved by calloc()
malloc() or new calls.

swissuniversities
14

High

Memory
Address

Low

Heap

|
|

Grow
Downwards

Grow
Upwards

Hes-so

Master

The Mbed Memory Model

High

* Inside RAM, you can distinguish two logical types: static
and dynamic memory.

« Static memory: allocated at compile time:

Vector table (read and write)

Crash data RAM

Global data

Static data Memory

Stacks for default threads (main, timer, idle and Address
scheduler/ISR).

* Dynamic memory is allocated at runtime:

Heap (dynamic data).
Stacks for user threads.

« Stack checking is turned on for all threads, and the kernel
errors if it detects an overflow condition.

Low

swissunjversities

15

A

Scheduler/ISR stack

Heap (continued)

Heap

Timer stack

Idle stack

Main stack

Global data

RW Vector table

Stack
Grow
Downwards

Heap
Grow
Upwards

Hes-so

Master

ER_IROM!1

The Mbed Memory Model

 The stack and heap addresses and sizes are defined at build time
— They can be defined in either C language (with linker file) or assembly
language
« The linker also uses a scatter file that describes the location of the
different memory regions. This file contains the definitions of
— The Code Region (ER_IROM1)
— The RAM Region (RW_IRAM1)
— The Heap Region (ARM_LIB_HEAP)
— The Stack Region (MBED_RAM_START)

swissuniversities Hes:so
16 Master

Data Storage Through An Example

Zero-Initialized
static data

Initialized static data

NEEIE]

Heap data

Usually stored in volatile
memories, e.g. SRAM

swissuniversities

int a, b; Constant data

const char ¢c=123;

int d=31;

void main(void) { Initialization Data
int i;
nt *:E?:i: Startup Code
array =(int*)mallog(128);

" e =d + 7;: Program code
printf(”HeIIo!"‘){ .text

Runtime Library Code

Usually stored in non-
volatile memories
e.g. FLASH

Hes-so

17 Master

What Memory Does a Program Need?

« Can the information change?
— No: put it in read-only, nonvolatile memory for saving RAM
— Yes: put it in read/write memory

 How long does the data need to exist?
— Program scope: statically allocated
— Function/method scope: automatically allocated on the stack
— From explicit allocation to explicit deallocation: on the heap
— Always define the most restrictive scope
— Use dynamic allocation on the heap with care

swissuniversities Hes:so
18 Master

Codelab

* Understand what memory goes where
Static Memory Analysis Using memap

« Optimizing the memory usage of an application
Reducing memory usage

swissuniversities Hes:so
19 Master

https://advembsof.isc.heia-fr.ch/codelabs/memory/#static-memory-analysis-using-memap
https://advembsof.isc.heia-fr.ch/codelabs/memory/#reducing-memory-usage-by-tuning-the-mbed-os-configuration

Data And Memory

A number of standard data types are supported by the C/C++ language

 However, their implementation depends on the processor architecture and C/C++
compiler

* In Arm programming, the data size is referred to as byte, half word, word, and double
word:

— Byte: 8-bit
— Half word: 16-bit
— Word: 32-bit
— Double word: 64-bit
« The table in the next slide shows the implementation of different data types

swissuniversities Hes:so
20 Master

Data Types

DETERAY] Size Signed Range Unsigned Range

char, int8_t, uint8 t Byte -128 to 127 0 to 255

short, int16_t, uintl6_t Half word -32768 to 32767 01065535

int, int32_t, uint32_t, long Word -2147483648 to 2147483647 0'to 4294967295
0 to 2%4-1

long long, int64 _t, uint64 t Double word

=263 t0 263-1

float Word

-3.4028234 x 10* to 3.4028234 x 10%

double, long double Double word

-1.7976931348623157 x103%8 t0 1.7976931348623157 x10308

pointers Word 0x00 to OxFFFFFFFF

enum Byte/ half word/ word Smallest possible data type
bool (C++), _bool(C) Byte True or false

wchar_t Half word 0 to 65535

swissuniversities

21

Hes - so

Master

Class Qualifiers

Const Volatile Static
e Never written by program, e Can be changed outside of e Declared within function or
can be put in ROM to save normal program flow: ISR, method, retains value
RAM hardware register between function/method
invocations

¢ Declared within classes: the
field is instantiated once for
all class instances and the
value is retained for the
program lifetime

e Compiler must be careful
with optimizations

Hes-so

swissuniversities
22 Master

Activation Record/Stack Frame

e Activation records are located
on the stack
— Calling a function creates
an activation record

— Returning from a function
deletes the activation record

 Automatic variables and
housekeeping information are
stored in a function’s activation

record

swissunjversities

Lower
address

Higher
address

23

(Free stack space)
<- Stack p
o Local storage
Activation record for
current function Return address
Arguments
o Local storage
Activation record for
. Return address
caller function
Arguments
o Local storage
Activation record for
, . Return address
caller’s caller function
Arguments
Activation record for Local storage
caller’s caller’s caller Return address
function Arguments
Hes-so

Master

Accessing Data

 What does it take to get a variable in memory

— It depends on location, which depends on storage
type (static, automatic, dynamic)

— So the associated cost/time is variable

swissuniversities Hes:so
24 Master

Memory Hierarchy

* Register: usually one CPU cycle to access

« Cache:
— Static RAM
s « Main Memory

Larger Size m — Dynamic RAM
Lower Cost

Lower Speed — Volatile data
Secondary
Memory

+ Secondary Memory: Flash/Hard disk
« Tertiary Memory: Tape libraries
Tertiahy « Temporal locality
« Spatial locality

Memory

* Memory Hierarchy — to exploit the memory
locality

swissuniversities Hes:so
25 Master

Codelab

« Understanding dynamic memory usage
Runtime memory tracing

* Understanding most common memory usage mistakes
Hunting for memory bugs

swissuniversities Hes:so
26 Master

https://advembsof.isc.heia-fr.ch/codelabs/memory/#runtime-memory-tracing
https://advembsof.isc.heia-fr.ch/codelabs/memory/#hunting-for-memory-bugs

Memory Protection Unit (MPU)

 What is the Memory Protection Unit (MPU) for ARM ?

Programmable unit

Allows privileged software such as OS kernels, to define memory access
permissions.

Monitors transactions, including instruction fetches and data accesses
Triggers a fault exception when an access violation is detected.

* The privileged software/OS kernel

Defines memory regions

Assigns memory access permission and memory attributes to each of them.

swissuniversities

27

Hes-so

Master

Memory Protection Unit (Cortex-M4)

swissunjversities

Figure 1. STM32 Cortex-M4 implementation

Cortex-M4
processor FPU
> ¢ Embedded
NVIC Processor Trace Macrocell >
core
. - Debug Memory Sgrlal R
< »| access . . wire >
protection unit .
port viewer
R T M
Flash Data
patch watchpoints
\ 4 ¢ t \ 4
Bus matrix
Code SRAM and
interface peripheral interface

Hes-so

Master

Memory Protection Unit (MPU)

* |tis a powerful component of a system for improving the system
security
— It can disallow the user mode/application software (i.e. the software running in
unprivileged mode) to access the critical regions of the memory.
« As example, the OS may do the following:
— Define a region of the memory, say from 0x4000 0000 to 0x4000_ FFFF

— Make this region accessible only while the processor code is running in privileged
mode

— Make this region as read-only
— Make this region as Execute-Never

swissuniversities Hes:so
29 Master

MPU Programming

« Through MPU registers, that can be read/written only while the processor is
at privileged access level.

» 8 regions of memories are permitted, identified by base address and size.

« Each region can have different 'access rights’ and MPU can be
enabled/disabled for each region.

« Each transaction from the processor is checked against the MPU
configuration.

— If the transaction's attribute matches the 'access rights' of the region, the transaction is
successful, and is produced at the processor's interface

— In case of a mismatch, an exception is generated, and the processor jumps to the
exceptional handler.

swissuniversities Hes:so
30 Master

MPU on Mbed OS

 Memory protection for Mbed OS is enabled automatically for devices
that support the MPU API.
« The MPU management functions provided in Mbed OS is limited to
turning off the memory protections if necessary
— Through Mbed MPU API (Mbed MPU Management)
 The memory protection in Mbed OS does the following:
— It prevents execution from RAM
— It prevents writing to ROM.

Hes-so

swissuniversities
31 Master

https://os.mbed.com/docs/mbed-os/v6.15/apis/mpu-management.html

MPU on Mbed OS

* Mbed OS handles MPU management automatically in the following situations:
— Memory protection is enabled as part of the boot sequence.
— Memory protection is disabled when starting a new application.
— Memory protection is disabled while flash programming.

« RAM execute lock (ScopedRamExecutionLock)
— After boot, execution from RAM is not allowed.

— Applications/libraries requiring the ability to execute from RAM can enable this by acquiring
the RAM execution lock.

« ROM write lock (ScopedRomWriteLock)
— After boot, writing to ROM is not allowed.

— Application/libraries requiring the ability to writing to ROM can enable this by acquiring the
ROM write lock.

swissuniversities Hes:so
32 Master

	Slide Number 1
	Tasks need memory
	What Does Memory Management Do?
	Typical Program-Generation Flow
	Compilation using Arm-Based Tools
	Compiler Stages
	Cortex-M Program Image
	Our Target Device Memory Map
	Cortex-M Program Image
	Cortex-M Program Image
	Program Image in Global Memory
	Codelab
	The Mbed Memory Model
	How is Data Stored in RAM?
	The Mbed Memory Model
	The Mbed Memory Model
	Data Storage Through An Example
	What Memory Does a Program Need?
	Codelab
	Data And Memory
	Data Types
	Class Qualifiers
	Activation Record/Stack Frame
	Accessing Data
	Memory Hierarchy
	Codelab
	Memory Protection Unit (MPU)
	Memory Protection Unit (Cortex-M4)
	Memory Protection Unit (MPU)
	MPU Programming
	MPU on Mbed OS
	MPU on Mbed OS

