
TSM_AdvEmbSof
Memory (Profiling, Optimisation)

Serge Ayer | 23.11.2023 | Cours MSE

Tasks need memory

2

• Computer memory is used for storing
– program code
– application data
– modified/computed data

• Memory is usually organized in different sections
– Code or Text

• Binary instructions to be executed
• Usually read-only
• Program Counter (PC) points to the next instruction to be executed

– Static Data
• Global/constant/static variables – shared between tasks/threads

– Heap
• Dynamic allocated with malloc/free/new/delete

– Stack (FILO)
• Used for executing code, method/function calls and return
• Position in Stack Pointer (SP)

What Does Memory Management Do?

3

• Memory needs to be managed
– Both the OS and user tasks need memory.

• Allocation/Partition
– How to allocate memory sections specific to each use (code, static, dynamic).
– Done at build and at run time.

• Relocation
– Changing the memory space dynamically, ideally translation done by hardware.

• Protection
– Illegal reference to other processes’ memory should be detected and stopped at run time.
– Cortex-M tasks may implement a Memory Protection Unit (MPU).

• Sharing
– Several tasks/threads may access common parts of the memory

Typical Program-Generation Flow

4

• The generation of program follows a typical development flow:
– Compile -> Assemble -> Link -> Download
– The generated executable file (or program image) is stored in the program memory (normally an on-chip flash memory), to be

fetched by the processor

Compilation using Arm-Based Tools

5

.O Files
.S Files

.AXF File
.LIB file

.BIN File
.HEX File

Disassembly File

C, C++
ASM files

Compile/assemble

Link

Executable

Compiler Stages

6

• Pre-processing
– Replaces macros, defined by an initial hash-tag (#) in the code
– Merges all subfiles (.c/.cpp, .h) to one complete file

• Parser
– Reads in C code
– Checks for syntax errors
– Forms intermediate code (tree representation)

• High-Level Optimizer: Modifies intermediate code (processor-independent)
• Code Generator

– Creates assembly code step-by-step from each node of the intermediate code
– Allocates variable uses to registers

• Low-Level Optimizer: Modifies assembly code (parts are processor-specific)
• Assembler: Creates object code (machine code)
• Linker/Loader: Creates executable image from object file

Cortex-M Program Image

7

• What is a program image?
– The program image (sometimes also called the

executable file) refers to a piece of fully
integrated code that is ready to execute.

• In the Cortex-M, the program image
includes:

– Vector table: includes the starting addresses of
exceptions (vectors) and the value of the main stack
point (MSP)

– C start-up routine

– Program: application code and data

– C library code: program codes for C library functions

Our Target Device Memory Map

8

Cortex-M Program Image

9

• Vector table
– Contains the starting addresses of

exceptions (vectors) and the value of the
main stack point (MSP)

• C Start-up code
– Used to set up data memory and the

initialization of values for global data
variables

– Is inserted by the compiler/linker
automatically, labeled as ‘__main’ by the
Arm compiler, or ‘__start’ by the GNU C
compiler

Cortex-M Program Image

10

• Program code
– Program code refers to the instructions

generated (application code) from the
application program and the application data
that includes:

• Initial values of variables: the local variables that are
initialized in functions or subroutines during program
execution time

• Constants: used in data values, address of peripherals,
character strings, etc.

– Sometimes stored together in data blocks called literal
pools

– Constant data such as lookup tables, graphics image data
(e.g., bit map) can be merged into the program images

• C library code
– Object codes inserted into the program

image by linkers

Program Image in Global Memory

11

• The program image is stored in the code region in global memory
– Up to 512 MB memory space range from 0x00000000 to 0x1FFFFFFF

• On our target device 2 MB in two separate memory banks

– Usually implemented on non-volatile memory, such as on-chip FLASH memory
– Normally separated from program data, which is allocated in the SRAM region

(or data region)

Codelab

12

• Understand your Bike Computer program image
The Bike Computer program image

• Understand the way a Mbed OS program is started and
how memory is initialized
The Boot Sequence and Memory Initialization

https://advembsof.isc.heia-fr.ch/codelabs/memory/#the-program-image
https://advembsof.isc.heia-fr.ch/codelabs/memory/#the-boot-sequence-and-memory-initialization

The Mbed Memory Model

13

• It follows the Cortex-M Memory Model
– It includes an additional optional bootloader
– A bootloader is a program that loads Mbed OS when a board is

turned on.
– Usually, the bootloader comes before the application in ROM and the

application starts immediately after the bootloader
– A boot sequence can have several stages of bootloaders, leading to

an application.
• The different stages (including the application) may need to evolve over

time, to add features or bug-fixes.
– Most boot sequences are composed of three stages:

• Boot selector (also known as root bootloader or stage zero bootloader):
does not get upgraded

• Bootloader: upgradable, with several versions stored on the device.
• Application: upgradable, with several versions stored on the device.

Code region

Application

Vector table

Optional
bootloader

How is Data Stored in RAM?

14

• Typically, the data can be divided into three
sections: static data, stack, and heap
– Static data: contains global variables and

static variables
– Stack: contains the temporary data for local

variables, parameter passing in function calls,
registers saving during exceptions, etc.

– Heap: contains the pieces of memory spaces
that are dynamically reserved by calloc()
malloc() or new calls.

The Mbed Memory Model

15

• Inside RAM, you can distinguish two logical types: static
and dynamic memory.

• Static memory: allocated at compile time:
– Vector table (read and write)
– Crash data RAM
– Global data
– Static data
– Stacks for default threads (main, timer, idle and

scheduler/ISR).
• Dynamic memory is allocated at runtime:

– Heap (dynamic data).
– Stacks for user threads.

• Stack checking is turned on for all threads, and the kernel
errors if it detects an overflow condition.

Memory
Address

Stack
Grow
Downwards

High

Crash data RAM

RW Vector table

Heap
Grow
Upwards

Low

Global data

Main stack

Idle stack

Timer stack

Heap

User thread 1 stack

User thread 2 stack

User thread n stack

Heap (continued)

Scheduler/ISR stack

The Mbed Memory Model

16

• The stack and heap addresses and sizes are defined at build time
– They can be defined in either C language (with linker file) or assembly

language
• The linker also uses a scatter file that describes the location of the

different memory regions. This file contains the definitions of
– The Code Region (ER_IROM1)
– The RAM Region (RW_IRAM1)
– The Heap Region (ARM_LIB_HEAP)
– The Stack Region (MBED_RAM_START)

ER_IROM1

i n t a , b ;
c o n s t c h a r c = 1 2 3 ;
i n t d = 3 1 ;
v o i d m a i n (v o i d) {

i n t i ;
c h a r f [3 2] ;
i n t * a r r a y ;
a r r a y = (i n t *) m a l l o c (1 2 8) ;
e = d + 7 ;
p r i n t f (“ H e l l o ! ”) ;

}

Data Storage Through An Example

17

Heap data

Initialized static data

Stack data

Zero-Initialized
static data

Usually stored in volatile
memories, e.g. SRAM

Usually stored in non-
volatile memories

e.g. FLASH

Runtime Library Code

Initialization Data

Constant data

Program code
.text

Startup Code

What Memory Does a Program Need?

18

• Can the information change?
– No: put it in read-only, nonvolatile memory for saving RAM
– Yes: put it in read/write memory

• How long does the data need to exist?
– Program scope: statically allocated
– Function/method scope: automatically allocated on the stack
– From explicit allocation to explicit deallocation: on the heap
– Always define the most restrictive scope
– Use dynamic allocation on the heap with care

Codelab

19

• Understand what memory goes where
Static Memory Analysis Using memap

• Optimizing the memory usage of an application
Reducing memory usage

https://advembsof.isc.heia-fr.ch/codelabs/memory/#static-memory-analysis-using-memap
https://advembsof.isc.heia-fr.ch/codelabs/memory/#reducing-memory-usage-by-tuning-the-mbed-os-configuration

Data And Memory

20

• A number of standard data types are supported by the C/C++ language
• However, their implementation depends on the processor architecture and C/C++

compiler
• In Arm programming, the data size is referred to as byte, half word, word, and double

word:
– Byte: 8-bit
– Half word: 16-bit
– Word: 32-bit
– Double word: 64-bit

• The table in the next slide shows the implementation of different data types

Data Types

21

Data type Size Signed Range Unsigned Range

char, int8_t, uint8_t Byte -128 to 127 0 to 255

short, int16_t, uint16_t Half word -32768 to 32767 0 to 65535

int, int32_t, uint32_t, long Word -2147483648 to 2147483647 0 to 4294967295

long long, int64_t, uint64_t Double word -263 to 263-1 0 to 264-1

float Word -3.4028234 × 1038 to 3.4028234 × 1038

double, long double Double word -1.7976931348623157 ×10308 to 1.7976931348623157 ×10308

pointers Word 0x00 to 0xFFFFFFFF

enum Byte/ half word/ word Smallest possible data type

bool (C++), _bool(C) Byte True or false

wchar_t Half word 0 to 65535

Class Qualifiers

22

Const

• Never written by program,
can be put in ROM to save
RAM

Volatile

• Can be changed outside of
normal program flow: ISR,
hardware register

• Compiler must be careful
with optimizations

Static

• Declared within function or
method, retains value
between function/method
invocations

• Declared within classes: the
field is instantiated once for
all class instances and the
value is retained for the
program lifetime

Activation Record/Stack Frame

23

• Activation records are located
on the stack

– Calling a function creates
an activation record

– Returning from a function
deletes the activation record

• Automatic variables and
housekeeping information are
stored in a function’s activation
record

Lower
address (Free stack space)

Activation record for
current function

Local storage
<- Stack pt

Return address
Arguments

Activation record for
caller function

Local storage
Return address

Arguments

Activation record for
caller’s caller function

Local storage
Return address

Arguments
Higher
address

Activation record for
caller’s caller’s caller

function

Local storage
Return address

Arguments

Accessing Data

24

• What does it take to get a variable in memory
– It depends on location, which depends on storage

type (static, automatic, dynamic)
– So the associated cost/time is variable

• Register: usually one CPU cycle to access
• Cache:

– Static RAM
• Main Memory

– Dynamic RAM
– Volatile data

• Secondary Memory: Flash/Hard disk
• Tertiary Memory: Tape libraries

• Temporal locality
• Spatial locality

• Memory Hierarchy – to exploit the memory
locality

Memory Hierarchy

25

Codelab

26

• Understanding dynamic memory usage
Runtime memory tracing

• Understanding most common memory usage mistakes
Hunting for memory bugs

https://advembsof.isc.heia-fr.ch/codelabs/memory/#runtime-memory-tracing
https://advembsof.isc.heia-fr.ch/codelabs/memory/#hunting-for-memory-bugs

Memory Protection Unit (MPU)

27

• What is the Memory Protection Unit (MPU) for ARM ?
– Programmable unit
– Allows privileged software such as OS kernels, to define memory access

permissions.
– Monitors transactions, including instruction fetches and data accesses
– Triggers a fault exception when an access violation is detected.

• The privileged software/OS kernel
– Defines memory regions
– Assigns memory access permission and memory attributes to each of them.

Memory Protection Unit (Cortex-M4)

28

Memory Protection Unit (MPU)

29

• It is a powerful component of a system for improving the system
security

– It can disallow the user mode/application software (i.e. the software running in
unprivileged mode) to access the critical regions of the memory.

• As example, the OS may do the following:
– Define a region of the memory, say from 0x4000_0000 to 0x4000_FFFF
– Make this region accessible only while the processor code is running in privileged

mode
– Make this region as read-only
– Make this region as Execute-Never

MPU Programming

30

• Through MPU registers, that can be read/written only while the processor is
at privileged access level.

• 8 regions of memories are permitted, identified by base address and size.
• Each region can have different 'access rights‘ and MPU can be

enabled/disabled for each region.
• Each transaction from the processor is checked against the MPU

configuration.
– If the transaction's attribute matches the 'access rights' of the region, the transaction is

successful, and is produced at the processor's interface
– In case of a mismatch, an exception is generated, and the processor jumps to the

exceptional handler.

MPU on Mbed OS

31

• Memory protection for Mbed OS is enabled automatically for devices
that support the MPU API.

• The MPU management functions provided in Mbed OS is limited to
turning off the memory protections if necessary
– Through Mbed MPU API (Mbed MPU Management)

• The memory protection in Mbed OS does the following:
– It prevents execution from RAM
– It prevents writing to ROM.

https://os.mbed.com/docs/mbed-os/v6.15/apis/mpu-management.html

MPU on Mbed OS

32

• Mbed OS handles MPU management automatically in the following situations:
– Memory protection is enabled as part of the boot sequence.
– Memory protection is disabled when starting a new application.
– Memory protection is disabled while flash programming.

• RAM execute lock (ScopedRamExecutionLock)
– After boot, execution from RAM is not allowed.
– Applications/libraries requiring the ability to execute from RAM can enable this by acquiring

the RAM execution lock.
• ROM write lock (ScopedRomWriteLock)

– After boot, writing to ROM is not allowed.
– Application/libraries requiring the ability to writing to ROM can enable this by acquiring the

ROM write lock.

	Slide Number 1
	Tasks need memory
	What Does Memory Management Do?
	Typical Program-Generation Flow
	Compilation using Arm-Based Tools
	Compiler Stages
	Cortex-M Program Image
	Our Target Device Memory Map
	Cortex-M Program Image
	Cortex-M Program Image
	Program Image in Global Memory
	Codelab
	The Mbed Memory Model
	How is Data Stored in RAM?
	The Mbed Memory Model
	The Mbed Memory Model
	Data Storage Through An Example
	What Memory Does a Program Need?
	Codelab
	Data And Memory
	Data Types
	Class Qualifiers
	Activation Record/Stack Frame
	Accessing Data
	Memory Hierarchy
	Codelab
	Memory Protection Unit (MPU)
	Memory Protection Unit (Cortex-M4)
	Memory Protection Unit (MPU)
	MPU Programming
	MPU on Mbed OS
	MPU on Mbed OS

