
TSM_AdvEmbSof
Priority Inversion

Serge Ayer | 22.11.2024 | Cours MSE

What is the concern?

2

• Multi-tasking program often require
to share resources among tasks

• Access to shared resources needs
to be protected against concurrent
access
– Mutual exclusion among competing

tasks
– A piece of code executed under

mutual exclusion is a critical section

Priority Inversion

3

• Until now, we have considered that tasks are independent, sharing no
resources, and not interacting. What if we remove this assumption?

– Scheduling of tasks is affected!
• One main problem arises: priority inversion

– High priority tasks may be blocked by lower priority tasks
• The main sources of priority inversion are

– Non preemptable sections
– Sharing resources
– Synchronization and mutual exclusion

• In all cases, the response time (latencies) are modified

Priority Inversion (Simplest Form)

4

Priority Inversion (Unbounded Form)

5

Solutions to Priority Inversion

6

• Tasks are ’forced’ to follow certain rules when locking
and unlocking a mutex
– This is about requesting and releasing resources.

• The rules are often called Resource Access Protocols
– There are several existing such protocols

• What about Mbed OS scheduling algorithm?
– Mbed OS/RTX implements the priority inheritance mechanism

Resource Access Protocols

7

• Need to consider the following points
– Is the priority inversion bounded?
– Does the protocol avoid deadlock?
– Does the protocol avoid unnecessary blocking?
– Is it easy to calculate the blocking time upper bound?
– What is the maximum number of blocking?
– Is it easy to implement?

Non-Preemptive Protocol (NPP)

8

• Principle: disallow pre-emption during the execution of
any critical section
– A task is assigned the highest priority if it succeeds in locking a critical

section

• The task is assigned its own priority when it releases the
critical section

Non-Preemptive Protocol (NPP)

9

Non-Preemptive Protocol (NPP)

10

• Advantages:
– This bounds Priority Inversion and for a given task the bound is the

maximal length of any single critical section belonging to lower priority
tasks

– It is deadlock free
– It limits the number of blocking of any task to one
– It is easy to implement and transparent

• But:
– It allows low priority tasks to block high priority tasks including those that

do not require access to shared resources.

Non-Preemptive Protocol (NPP)

11

Priority Inheritance Protocol

12

• The need is to again to avoid unbounded priority inversion
• Principle:

– The idea is to elevate the priority of a low priority task to the highest priority
of tasks blocked by it.

– And resume its original priority when it exits the critical section.
– This prevents medium-priority tasks from preempting lower priority tasks and

thus prolonging the blocking duration experienced by the higher-priority
tasks.

Priority Inheritance Protocol (PIP)

13

Priority Inheritance Protocol

14

• Advantages:
– Blocking time is bounded.
– Blocking time can be computed.

• But:
– It is not deadlock free.
– Chained blocking is still possible (push-through blocking)
– PIP must implement transitive inheritance (with nested CSs)

• Applied in many RTOS including Mbed OS/RTX.

Chained blocking with Priority Inheritance

15

Transitivity for PIP

16

Transitivity is needed

17

Deadlock possible with PIP

18

PIP does not prevent deadlock

Highest Locker’s Priority Protocol

19

• Idea: define the ceiling C(S) of a critical section S to be the highest priority
of all tasks that use S during execution. Note that C(S) can be calculated
statically (off-line).

• Whenever a task succeeds in holding a critical section S, its priority is
changed dynamically to the maximum of its current priority and C(S)

• When it finishes with S, it sets its priority back to what it was before.

Highest Locker’s Priority Protocol

20

No deadlock with HLP

21

• Once task 2 gets b, it runs with priority 𝑝𝑝1, task 1 will be
blocked and cannot get a before task 2

No chained blocking with HLP

22

Other resource access protocols

23

• Priority Ceiling Protocol
– Extend the Priority Inheritance Protocol
– Rule for granting a lock request on a free mutex.
– Avoid multiple blocking by not allowing a task to enter a critical

section if there are locked mutexes that could block it.
– This means that once a task enters its first critical section, it can

never be blocked by lower-priority tasks until its completion.
• Stack Resource Policy

– Allows dynamic scheduling

Summary

24

	Slide Number 1
	What is the concern?
	Priority Inversion
	Priority Inversion (Simplest Form)
	Priority Inversion (Unbounded Form)
	Solutions to Priority Inversion
	Resource Access Protocols
	Non-Preemptive Protocol (NPP)
	Non-Preemptive Protocol (NPP)
	Non-Preemptive Protocol (NPP)
	Non-Preemptive Protocol (NPP)
	Priority Inheritance Protocol
	Priority Inheritance Protocol (PIP)
	Priority Inheritance Protocol
	Chained blocking with Priority Inheritance
	Transitivity for PIP
	Transitivity is needed
	Deadlock possible with PIP
	Highest Locker’s Priority Protocol
	Highest Locker’s Priority Protocol
	No deadlock with HLP
	No chained blocking with HLP
	Other resource access protocols
	Summary

