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What is the concern?
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• Multi-tasking program often require 
to share resources among tasks

• Access to shared resources needs 
to be protected against concurrent 
access
– Mutual exclusion among competing 

tasks
– A piece of code executed under 

mutual exclusion is a critical section



Priority Inversion
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• Until now, we have considered that tasks are independent, sharing no 
resources, and not interacting. What if we remove this assumption?

– Scheduling of tasks is affected!
• One main problem arises: priority inversion

– High priority tasks may be blocked by lower priority tasks
• The main sources of priority inversion are

– Non preemptable sections
– Sharing resources
– Synchronization and mutual exclusion

• In all cases, the response time (latencies) are modified



Priority Inversion (Simplest Form)
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Priority Inversion (Unbounded Form)
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Solutions to Priority Inversion

6

• Tasks are ’forced’ to follow certain rules when locking 
and unlocking a mutex 
– This is about requesting and releasing resources.

• The rules are often called Resource Access Protocols
– There are several existing such protocols

• What about Mbed OS scheduling algorithm? 
– Mbed OS/RTX implements the priority inheritance mechanism



Resource Access Protocols
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• Need to consider the following points
– Is the priority inversion bounded?
– Does the protocol avoid deadlock?
– Does the protocol avoid unnecessary blocking?
– Is it easy to calculate the blocking time upper bound?
– What is the maximum number of blocking?
– Is it easy to implement?



Non-Preemptive Protocol (NPP)
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• Principle: disallow pre-emption during the execution of 
any critical section
– A task is assigned the highest priority if it succeeds in locking a critical 

section

• The task is assigned its own priority when it releases the 
critical section



Non-Preemptive Protocol (NPP)
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Non-Preemptive Protocol (NPP)
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• Advantages:
– This bounds Priority Inversion and for a given task the bound is the 

maximal length of any single critical section belonging to lower priority 
tasks

– It is deadlock free
– It limits the number of blocking of any task to one
– It is easy to implement and transparent

• But:
– It allows low priority tasks to block high priority tasks including those that 

do not require access to shared resources.



Non-Preemptive Protocol (NPP)
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Priority Inheritance Protocol
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• The need is to again to avoid unbounded priority inversion
• Principle:

– The idea is to elevate the priority of a low priority task to the highest priority 
of tasks blocked by it.

– And resume its original priority when it exits the critical section.
– This prevents medium-priority tasks from preempting lower priority tasks and 

thus prolonging the blocking duration experienced by the higher-priority 
tasks.



Priority Inheritance Protocol (PIP)
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Priority Inheritance Protocol
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• Advantages:
– Blocking time is bounded.
– Blocking time can be computed.

• But:
– It is not deadlock free.
– Chained blocking is still possible (push-through blocking)
– PIP must implement transitive inheritance (with nested CSs)

• Applied in many RTOS including Mbed OS/RTX.



Chained blocking with Priority Inheritance
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Transitivity for PIP
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Transitivity is needed
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Deadlock possible with PIP
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PIP does not prevent deadlock



Highest Locker’s Priority Protocol
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• Idea: define the ceiling C(S) of a critical section S to be the highest priority 
of all tasks that use S during execution. Note that C(S) can be calculated 
statically (off-line).

• Whenever a task succeeds in holding a critical section S, its priority is 
changed dynamically to the maximum of its current priority and C(S)

• When it finishes with S, it sets its priority back to what it was before.



Highest Locker’s Priority Protocol
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No deadlock with HLP
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• Once task 2 gets b, it runs with priority 𝑝𝑝1, task 1 will be 
blocked and cannot get a before task 2 



No chained blocking with HLP 
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Other resource access protocols
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• Priority Ceiling Protocol
– Extend the Priority Inheritance Protocol
– Rule for granting a lock request on a free mutex.
– Avoid multiple blocking by not allowing a task to enter a critical 

section if there are locked mutexes that could block it. 
– This means that once a task enters its first critical section, it can 

never be blocked by lower-priority tasks until its completion.
• Stack Resource Policy

– Allows dynamic scheduling



Summary
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