
TSM_AdvEmbSof
Scheduling for Embedded Systems
Part III
Serge Ayer | 10.11.2023 | Cours MSE

Dynamic scheduling

2

• Rather than applying a static order of tasks, allow task scheduling to be
computed dynamically online:

– Based on importance (priority) or any other criteria (e.g. task deadline, duration
or creation time).

– This also simplifies the creation of tasks with arbitrary rates.
• Scheduling based on task importance

– Prioritization means that less important tasks don’t delay more important ones.
• How often does the scheduler decide what to run?

– Coarse grain: after a task finishes. It is non preemptive or Run-To-Completion (RTC)
– Fine grain: at any time. It is preemptive – one task can preempt another less important task.

RTC: Task State and Scheduling Rules

3

• The Scheduler chooses among Ready
tasks for execution based on priority

• Events can change a task state
• Scheduling rules:

– If no task is ready, the scheduler sits in idle
state.

– If no task is running, the scheduler starts the
highest priority ready task, if any.

– Once started, a task runs until it completes
(no preemption).

– Completed tasks enter the waiting state until
released again

Ready

Running

Waiting

Task is released
(ready to run)

Task completes

Started as
highest
priority

ready task

Preemption: Task State and Scheduling Rules

4

• The Scheduler chooses among Ready
tasks for execution based on priority

• Scheduling rules:
– A task’s activities may lead it to waiting

(blocked)
– A waiting task never gets the CPU. It must

be signaled by an ISR or another task.
– Only the scheduler moves tasks between

ready and running

Ready

Running

Waiting

What the task needs
happens

(ready to run)

Task needs something
to happen

Started as
highest
priority

ready task

This isn’t
the highest

priority
task

anymore

Preemptive Scheduling Algorithms (Periodic Tasks)

5

• Accepted constraints
– No resource sharing
– D = T, periods are fixed, worst-time execution times are fixed

• Rate Monotonic Scheduling
– Tasks with higher request rates/shorter periods have higher priorities.
– Fixed periods means fixed priorities.
– Is optimal among fixed-priority algorithms.

– Schedulability test: U = ∑𝑖𝑖=1𝑛𝑛 𝐶𝐶𝑖𝑖
𝑇𝑇𝑖𝑖
≤ n(2

1
𝑛𝑛 − 1)

• Earliest Deadline First
– Tasks with earlier absolute deadlines will be executed at higher priorities.
– Priorities are dynamic since absolute deadlines of periodic tasks vary over time.

– Schedulability test: U = ∑𝑖𝑖=1𝑛𝑛 𝐶𝐶𝑖𝑖
𝑇𝑇𝑖𝑖
≤ 1

Schedulability: a simple example

6

• Given two tasks:
𝐶𝐶1 = 2 𝑇𝑇1 = 5 𝐶𝐶2= 4 𝑇𝑇2 = 7

• 𝑈𝑈 = 2
5

+ 4
7

= 34
35
≈ 0.97

• 𝑈𝑈 > 2 2 − 1 ≈ 0.83
– Schedulability using Rate Monotonic is not

guaranteed
– Schedulability using EDF is guaranteed

Schedulability: a simple example

7

Taken from “Hard Real-Time Computing Systems, Giorgio C. Buttazzo

Preemption or not Preemption?

8

• Preemption offers better response times
– Can do more processing.
– Can lower processor speed, saving money and power.

• Preemption requires more complicated programming and more
memory.

• Preemption introduces vulnerability to data race conditions.
• Most RTOS support preemption and allow task scheduling based on

priorities.

Comparison of RAM requirements

9

• Multi-tasking and preemption requires space for each stack.
• Need space for all static variables (including globals).

Non-preemptive
Static

Ta
sk

 1
 M

ax
 S

ta
ck

Ta
sk

 2
 M

ax
 S

ta
ck

Ta
sk

 3
 M

ax
 S

ta
ck

Ta
sk

 4
 M

ax
 S

ta
ck

Task 1 Statics
Task 2 Statics
Task 3 Statics
Task 4 Statics

Non-preemptive
Dynamic

Ta
sk

 1
 M

ax
 S

ta
ck

Ta
sk

 2
 M

ax
 S

ta
ck

Ta
sk

 3
 M

ax
 S

ta
ck

Ta
sk

 4
 M

ax
 S

ta
ck

Task 1 Statics
Task 2 Statics
Task 3 Statics
Task 4 Statics

Preemptive
Dynamic

With
Multitasking

Ta
sk

 1
 M

ax
 S

ta
ck

Ta
sk

 2
 M

ax
 S

ta
ck

Ta
sk

 3
 M

ax
 S

ta
ck

Ta
sk

 4
 M

ax
 S

ta
ck

Task 1 Statics
Task 2 Statics
Task 3 Statics
Task 4 Statics

Mbed OS/RTX Task Scheduling

10

• Mbed OS RTOS is based on RTX5
– RTX5 is the ARM CMSIS-RTOS implementation
– RTX5 implements a low-latency preemptive scheduler

• Scheduling is tightly linked with the concept of threads
• Cortex-M processors support two modes of operation, Thread and

Handler modes
– Entering Thread Mode: on Reset or as a result of an exception return

(privileged or unprivileged code)
– Entering Handler mode: as a result of an exception (only privileged

code).

Mbed OS/RTX Task Scheduling

11

• Handlers used for low-latency scheduling
– SysTick_Handler (time-based scheduling)
– SVC_Handler (RTOS call, lock-based scheduling)
– PendSV_Handler (interrupt-based scheduling)

• Priorities are configured such that no preemption happens between
handlers
– No need for critical section for protecting the scheduler
– ISR can still preempt handlers, without latency

• Combination of priority and round-robin based scheduling
– Round Robin for tasks of same priorities
– Priority based for other tasks

Mbed OS Task Scheduling

12

Mbed OS uses the SysTick timer in periods of 1ms to process threads' scheduling.

Mbed OS/RTX Scheduling

13

RTX/Mbed OS Scheduling Options

14

• Pre-emptive scheduling
– Each task will run until it is pre-empted (based on priority) or has reached a blocking OS call.

• Round-Robin scheduling
– Each task with the same priority will run for a fixed period, or time slice, or until it has

reached a blocking OS call.
– Quantum is determined at compilation time (in the RTX_Config.h file:

OS_TICK_FREQ/OS_ROBIN_TIMEOUT).
– If quantum expires, the thread state will be changed to READY.

• The default scheduling option for RTX is Round-Robin and Preemptive
– Round-Robin can be c.onfigured/disabled

Scheduling Algorithms with Mbed OS

15

• Considering only application threads
• Co-operative multi-tasking / RTC

– Round-Robin is disabled.
– Each task gets the same fixed priority.
– Each task will run until it reached a blocking OS call, uses the ThisThread::yield() call or

finishes (RTC).
• Rate Monotonic Scheduling

– Round-Robin is disabled.
– Each periodic task gets a fixed priority based on its period.

• Earliest Deadline First
– Would require to recompute the priority of each thread each time a task gets ready
– Is not feasible without modifying the scheduler itself

Task/Context Switching

16

• The Thread Control Block (TCB/osRtxThread_t) makes context
switching a bit easier

– Scheduler will start or stop a process accordingly
– Stores necessary information in the TCB to stop

• Hardware registers
• Program Counter
• Memory states, stack and heap
• State

– Similarly, loads necessary information from the PCB
• Notice that context switching does consume time!

– Could be up to several thousand CPU cycles (for Cortex-M RTX
around 200-300 cycles.

– Hardware support is also needed
• But multitasking is feasible, although only one active process at

any given time

	Slide Number 1
	Dynamic scheduling
	RTC: Task State and Scheduling Rules
	Preemption: Task State and Scheduling Rules
	Preemptive Scheduling Algorithms (Periodic Tasks)
	Schedulability: a simple example
	Schedulability: a simple example
	Preemption or not Preemption?
	Comparison of RAM requirements
	Mbed OS/RTX Task Scheduling
	Mbed OS/RTX Task Scheduling
	Mbed OS Task Scheduling
	Mbed OS/RTX Scheduling
	RTX/Mbed OS Scheduling Options
	Scheduling Algorithms with Mbed OS
	Task/Context Switching

