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Dynamic scheduling
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• Rather than applying a static order of tasks, allow task scheduling to be 
computed dynamically online:

– Based on importance (priority) or any other criteria (e.g. task deadline, duration 
or creation time).

– This also simplifies the creation of tasks with arbitrary rates.
• Scheduling based on task importance

– Prioritization means that less important tasks don’t delay more important ones.
• How often does the scheduler decide what to run?

– Coarse grain: after a task finishes. It is non preemptive or Run-To-Completion (RTC)
– Fine grain: at any time. It is preemptive – one task can preempt another less important task. 



RTC: Task State and Scheduling Rules
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• The Scheduler chooses among Ready 
tasks for execution based on priority

• Events can change a task state
• Scheduling rules:

– If no task is ready, the scheduler sits in idle 
state.

– If no task is running, the scheduler starts the 
highest priority ready task, if any.

– Once started, a task runs until it completes 
(no preemption).

– Completed tasks enter the waiting state until 
released again
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Preemption: Task State and Scheduling Rules

4

• The Scheduler chooses among Ready 
tasks for execution based on priority

• Scheduling rules:
– A task’s activities may lead it to waiting 

(blocked)
– A waiting task never gets the CPU. It must 

be signaled by an ISR or another task.
– Only the scheduler moves tasks between 

ready and running
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Preemptive Scheduling Algorithms (Periodic Tasks)
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• Accepted constraints
– No resource sharing
– D = T, periods are fixed, worst-time execution times are fixed

• Rate Monotonic Scheduling
– Tasks with higher request rates/shorter periods have higher priorities.
– Fixed periods means fixed priorities.
– Is optimal among fixed-priority algorithms.

– Schedulability test: U = ∑𝑖𝑖=1𝑛𝑛 𝐶𝐶𝑖𝑖
𝑇𝑇𝑖𝑖
≤ n(2

1
𝑛𝑛 − 1)

• Earliest Deadline First
– Tasks with earlier absolute deadlines will be executed at higher priorities.
– Priorities are dynamic since absolute deadlines of periodic tasks vary over time.

– Schedulability test: U = ∑𝑖𝑖=1𝑛𝑛 𝐶𝐶𝑖𝑖
𝑇𝑇𝑖𝑖
≤ 1



Schedulability: a simple example

6

• Given two tasks: 
𝐶𝐶1 = 2 𝑇𝑇1 = 5 𝐶𝐶2= 4 𝑇𝑇2 = 7

• 𝑈𝑈 = 2
5

+ 4
7

= 34
35
≈ 0.97

• 𝑈𝑈 > 2 2 − 1 ≈ 0.83
– Schedulability using Rate Monotonic is not 

guaranteed
– Schedulability using EDF is guaranteed



Schedulability: a simple example
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Taken from “Hard Real-Time Computing Systems, Giorgio C. Buttazzo



Preemption or not Preemption?
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• Preemption offers better response times
– Can do more processing.
– Can lower processor speed, saving money and power.

• Preemption requires more complicated programming and more 
memory.

• Preemption introduces vulnerability to data race conditions.
• Most RTOS support preemption and allow task scheduling based on 

priorities.



Comparison of RAM requirements
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• Multi-tasking and preemption requires space for each stack.
• Need space for all static variables (including globals).
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Mbed OS/RTX Task Scheduling
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• Mbed OS RTOS is based on RTX5
– RTX5 is the ARM CMSIS-RTOS implementation
– RTX5 implements a low-latency preemptive scheduler

• Scheduling is tightly linked with the concept of threads
• Cortex-M processors support two modes of operation, Thread and 

Handler modes
– Entering Thread Mode: on Reset or as a result of an exception return 

(privileged or unprivileged code)
– Entering Handler mode: as a result of an exception (only privileged 

code).



Mbed OS/RTX Task Scheduling
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• Handlers used for low-latency scheduling
– SysTick_Handler (time-based scheduling)
– SVC_Handler (RTOS call, lock-based scheduling)
– PendSV_Handler (interrupt-based scheduling)

• Priorities are configured such that no preemption happens between 
handlers
– No need for critical section for protecting the scheduler
– ISR can still preempt handlers, without latency

• Combination of priority and round-robin based scheduling
– Round Robin for tasks of same priorities
– Priority based for other tasks



Mbed OS Task Scheduling

12

Mbed OS uses the SysTick timer in periods of 1ms to process threads' scheduling.



Mbed OS/RTX Scheduling
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RTX/Mbed OS Scheduling Options
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• Pre-emptive scheduling
– Each task will run until it is pre-empted (based on priority) or has reached a blocking OS call.

• Round-Robin scheduling
– Each task with the same priority will run for a fixed period, or time slice, or until it has 

reached a blocking OS call.
– Quantum is determined at compilation time (in the RTX_Config.h file: 

OS_TICK_FREQ/OS_ROBIN_TIMEOUT).
– If quantum expires, the thread state will be changed to READY.

• The default scheduling option for RTX is Round-Robin and Preemptive
– Round-Robin can be c.onfigured/disabled



Scheduling Algorithms with Mbed OS
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• Considering only application threads
• Co-operative multi-tasking / RTC

– Round-Robin is disabled.
– Each task gets the same fixed priority.
– Each task will run until it reached a blocking OS call, uses the ThisThread::yield() call or 

finishes (RTC).
• Rate Monotonic Scheduling

– Round-Robin is disabled.
– Each periodic task gets a fixed priority based on its period.

• Earliest Deadline First
– Would require to recompute the priority of each thread each time a task gets ready
– Is not feasible without modifying the scheduler itself



Task/Context Switching
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• The Thread Control Block (TCB/osRtxThread_t) makes context 
switching a bit easier

– Scheduler will start or stop a process accordingly
– Stores necessary information in the TCB to stop

• Hardware registers
• Program Counter
• Memory states, stack and heap
• State

– Similarly, loads necessary information from the PCB
• Notice that context switching does consume time! 

– Could be up to several thousand CPU cycles (for Cortex-M RTX 
around 200-300 cycles.

– Hardware support is also needed
• But multitasking is feasible, although only one active process at 

any given time
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