
TSM_AdvEmbSof
Tasks and concurrency

Serge Ayer | 03.11.2023 | Cours MSE

Organize an Embedded Software into multiple tasks

2

• As we have seen in the previous lecture, it’s not usually possible to
program every embedded software into a single control loop.

• The code needs to be broken up into smaller elements such that
– code is readable, structured and documented
– code can be tested in a modular form
– development reuses existing code utilities to keep development time

short
– code design supports multiple engineers working on a single project
– future upgrades to code can be implemented efficiently

• Organize these code elements into classes and methods

Organize an Embedded Software into multiple tasks

3

• In almost all embedded programs, the program has to undertake a
number of different activities. We call these distinct activities tasks.
– Once a program has more than one task, we enter the domain of multi-

tasking.
• Tasks performed by embedded systems tend to fall into two

categories:
– event-triggered: occur when a particular external event happens, at a

time which is not predictable
– time-triggered: happen periodically, at a time determined by the

microcontroller.

Our Bike computer example

4

Task Event or time-triggered

Reset with push button Event

Pedal rotation (speed and distance) Event or time-triggered

Change gear Event

Get temperature Time-triggered

Update display Event or time-triggered

Multitasking and OS

5

• Use an OS for writing multitasking applications
• What is an Operating System doing?

– Provides an intermediary interface between applications and computer hardware
– Facilitates application development (convenience and efficiency)

• Various OSs are available in the market for various hardware platforms, but they have the same
missions and must perform the same tasks:

Managing the
processor

Managing
memory

Managing
devices

Managing file
systems System security

Managing
network

communication

Fault tolerance
and error
detection

Multitasking
and job

accounting

Task
coordination

Operating System Services

6

Basic operating system services include:

Scheduling
tasks

Allocating
memory

resources
Managing IOs

Managing file
systems

Communicating
and networking

Detecting and
fixing errors

Protecting and
securing

information

Threads vs Processes

7

• A process allows to isolate different tasks running on the same platform
– Process resources are private to the process

• For instance, the memory attached to a process is private and cannot be easily
accessed from other processes.

– Inter-process communication is a costly process
– Context switching between processes is more intensive and costly than between

threads
• A process can usually run several threads

– The threads share the process resources
– The threads own their own context (stack, registers, etc.)
– Sharing resources among threads is easier and less costly

Multitasking vs Multiprocessing

8

• In a uniprocessor system, only one process executes at a time.
• Multitasking:

– Multiple tasks run concurrently on a uniprocessor with interleaved or time shared execution,
or simultaneously on multiple processor systems.

– The concurrent execution of multiple tasks must manage resource sharing:
• For example, utilization of shared memory by multiple processes correctly without overwriting the values and

writing in the correct sequence.

• Multiprocessing:
– Use of two or more CPUs (processors) or cores within a CPU.
– Multiple processes can be executed at a time.
– These processors share the computer bus, sometimes the clock, memory and peripheral

devices also.

Tasks and RTOS

9

• RTOS provides a approach to program development where control of the
CPU and all system resources are handed to the operating system (OS).

• It is the OS which determines which section of the program is to run, for
how long, and how it accesses system resources.

– The OS also provides communication and synchronization between tasks.
– It controls the use of resources shared between the tasks, for example memory

and hardware peripherals.
• A program written for an RTOS is structured into tasks, where each task:

– Is mostly executed in a separate process or thread (though it is not mandatory).
– Written as a self-contained program module.
– Can be prioritized

Mbed OS/RTX Threads

10

• On RTOS, tasks are often associated with threads
– No process concept
– Multi-tasking = multiple threads

• Mbed OS provides a Thread API
– Based on Keil RTX5 RTOS kernel, through the CMSIS-RTOS API

• Full description of the API on Thread API
– A thread is an instance of the Thread class. It must be created and then started.
– Threads can be created with different priorities.
– Important: at system initialization, a special thread function executing the main()

function is created

https://os.mbed.com/docs/mbed-os/v6.16/apis/thread.html

Mbed/RTX Threads

11

Mbed OS/RTX Thread States

12

• Running:
– Currently running.
– Only one thread at a time can be in this state.

• Ready:
– Ready to run are in the Ready state.
– Once the Running thread has terminated or is Waiting, the next

Ready thread with the highest priority becomes the Running
thread.

• Waiting/Blocked:
– Waiting for an event to occur.

• Inactive/Terminated:
– Not created or terminated.
– These threads typically consume no system resources.

Mbed OS EventQueue

13

• Simple and powerful mechanism for running an event
loop

• Periodic tasks can be posted to the queue
• The queue can be used for postponing the execution of

a code sequence from an interrupt handler to a user
context

• Events must be dispatched by a thread
• Documentation is available here

https://os.mbed.com/docs/mbed-os/v6.16/apis/eventqueue.html

EventQueue principe

14

Callback

Callback

Callback

Callback

Callback

Dispatch
_forever

Thread (main
or separate)

call

Call_every

EventQueue

Thread synchronization

15

• In a multitasking system, the different tasks may compete for shared resources or
may wait for different events to happen.

• In some cases, a given task may thus enter a Waiting or Blocked state.
• There are in fact multiple Waiting states:

– WaitingEventFlag: Waiting for a event flag to be set.
– WaitingMutex: waiting for a mutex event to occur.
– WaitingSemaphore: Waiting for a semaphore event to occur.
– WaitingThreadFlag: Waiting for a thread flag to be set.
– WaitingMemoryPool: Waiting for a memory pool.
– WaitingMessageGet: Waiting for message to arrive.
– WaitingMessagePut: Waiting for message to be sent.
– WaitingDelay: Waiting for a delay to occur.

Events

16

• Events are useful for waiting for specific conditions
– One thread waits for a specific condition to be met

• The condition can be made of one specific flag or a combination (AND/OR) of flags
• Wait with timeout is also possible

– Another thread notifies (sets) the specific condition
– No busy waiting !

• In MbedOS, events are made available through the EventFlags API.
• Codelab: Using EventFlags for Waiting for an Event

https://os.mbed.com/docs/mbed-os/v6.16/apis/eventflags.html
https://os.mbed.com/docs/mbed-os/v6.2/apis/eventflags.html
https://advembsof.isc.heia-fr.ch/codelabs/multi-tasking/#using-eventflags-for-waiting-for-an-event

Mutex

17

• Even on uniprocessor systems, there is a need for protection when sharing resources
• Mutex controls the access to shared resources

– Enforces that only one thread of execution can have access to a section of code (called the
critical section)

– Needs to care about deadlock or starvation
• Be careful when entering more than one mutex
• Always release a mutex after use

• RTX/Mbed OS implements the priority inheritance scheme
– No priority ceiling

• Codelabs:
Shared Resources and Mutual Exclusion
Deadlock

https://advembsof.isc.heia-fr.ch/codelabs/multi-tasking/#shared-resources-and-mutual-exclusion
https://advembsof.isc.heia-fr.ch/codelabs/multi-tasking/#deadlock

Dealing with Deadlock

18

• Ostrich algorithm (very famous!)
• Deadlock prevention: if any of the Coffman conditions are false

– Mutex is inevitable
– Request all resources at the beginning– either pick two forks at the same time or wait / all-or-none
– Preemption is inevitable
– Prevent circular wait condition: Resource hierarchy solution by Dijkstra (as the only practically avoidable

condition)
• Deadlock avoidance

– Evaluate the chance of deadlock while allocating a resource. Grant or deny based on this information
– Banker’s algorithm

• Deadlock detection: what to do with the existing deadlock?
– Model checking

• Kill all or part of the deadlocked processes?
– Resource preemption?
– Restart? Watchdog for embedded system?

Semaphore

19

• A semaphore manages thread access to a
pool of shared resources of a certain type
– Unlike a mutex, a semaphore can control

access to several shared resources
– For example, a semaphore enables access to

and management of a group of identical
peripherals

• Codelab: Shared Data and Semaphore

https://advembsof.isc.heia-fr.ch/codelabs/multi-tasking/#shared-data-and-semaphore

Queue / Mail

20

• A Queue allows you to queue
integer/pointers to data from producer
threads to consumer threads

• A Mail works like a queue, but in addition it
provides a memory pool for allocating
messages

• Codelab: Shared Data and Queue

https://advembsof.isc.heia-fr.ch/codelabs/multi-tasking/#shared-data-and-queue

	Slide Number 1
	Organize an Embedded Software into multiple tasks
	Organize an Embedded Software into multiple tasks
	Our Bike computer example
	Multitasking and OS
	Operating System Services
	Threads vs Processes
	Multitasking vs Multiprocessing
	Tasks and RTOS
	Mbed OS/RTX Threads
	Mbed/RTX Threads
	Mbed OS/RTX Thread States
	Mbed OS EventQueue
	EventQueue principe
	Thread synchronization
	Events
	Mutex
	Dealing with Deadlock
	Semaphore
	Queue / Mail

