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Organize an Embedded Software into multiple tasks
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• As we have seen in the previous lecture, it’s not usually possible to 
program every embedded software into a single control loop.

• The code needs to be broken up into smaller elements such that
– code is readable, structured and documented
– code can be tested in a modular form
– development reuses existing code utilities to keep development time 

short
– code design supports multiple engineers working on a single project
– future upgrades to code can be implemented efficiently

• Organize these code elements into classes and methods



Organize an Embedded Software into multiple tasks
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• In almost all embedded programs, the program has to undertake a 
number of different activities. We call these distinct activities tasks.
– Once a program has more than one task, we enter the domain of multi-

tasking.
• Tasks performed by embedded systems tend to fall into two 

categories:
– event-triggered: occur when a particular external event happens, at a 

time which is not predictable
– time-triggered: happen periodically, at a time determined by the 

microcontroller.



Our Bike computer example
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Task Event or time-triggered

Reset with push button Event

Pedal rotation (speed and distance) Event or time-triggered

Change gear Event

Get temperature Time-triggered

Update display Event or time-triggered



Multitasking and OS
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• Use an OS for writing multitasking applications
• What is an Operating System doing?

– Provides an intermediary interface between applications and computer hardware
– Facilitates application development (convenience and efficiency)

• Various OSs are available in the market for various hardware platforms, but they have the same 
missions and must perform the same tasks:

Managing the 
processor

Managing 
memory

Managing 
devices

Managing file 
systems System security

Managing 
network 

communication

Fault tolerance 
and error 
detection

Multitasking 
and job 

accounting

Task 
coordination



Operating System Services
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Basic operating system services include:

Scheduling 
tasks

Allocating 
memory 

resources
Managing IOs

Managing file 
systems

Communicating 
and networking

Detecting and 
fixing errors

Protecting and 
securing 

information



Threads vs Processes

7

• A process allows to isolate different tasks running on the same platform
– Process resources are private to the process

• For instance, the memory attached to a process is private and cannot be easily 
accessed from other processes.

– Inter-process communication is a costly process
– Context switching between processes is more intensive and costly than between 

threads
• A process can usually run several threads

– The threads share the process resources
– The threads own their own context (stack, registers, etc.)
– Sharing resources among threads is easier and less costly



Multitasking vs Multiprocessing
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• In a uniprocessor system, only one process executes at a time.
• Multitasking:

– Multiple tasks run concurrently on a uniprocessor with interleaved or time shared execution, 
or simultaneously on multiple processor systems. 

– The concurrent execution of multiple tasks must manage resource sharing:
• For example, utilization of shared memory by multiple processes correctly without overwriting the values and 

writing in the correct sequence.

• Multiprocessing:
– Use of two or more CPUs (processors) or cores within a CPU.
– Multiple processes can be executed at a time.
– These processors share the computer bus, sometimes the clock, memory and peripheral 

devices also.



Tasks and RTOS
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• RTOS provides a approach to program development where control of the 
CPU and all system resources are handed to the operating system (OS). 

• It is the OS which determines which section of the program is to run, for 
how long, and how it accesses system resources.

– The OS also provides communication and synchronization between tasks.
– It controls the use of resources shared between the tasks, for example memory 

and hardware peripherals.
• A program written for an RTOS is structured into tasks, where each task:

– Is mostly executed in a separate process or thread (though it is not mandatory).
– Written as a self-contained program module. 
– Can be prioritized



Mbed OS/RTX Threads
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• On RTOS, tasks are often associated with threads
– No process concept
– Multi-tasking = multiple threads

• Mbed OS provides a Thread API
– Based on Keil RTX5 RTOS kernel, through the CMSIS-RTOS API

• Full description of the API on Thread API
– A thread is an instance of the Thread class. It must be created and then started.
– Threads can be created with different priorities.
– Important: at system initialization, a special thread function executing the main() 

function is created

https://os.mbed.com/docs/mbed-os/v6.16/apis/thread.html


Mbed/RTX Threads
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Mbed OS/RTX Thread States
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• Running: 
– Currently running.
– Only one thread at a time can be in this state.

• Ready: 
– Ready to run are in the Ready state. 
– Once the Running thread has terminated or is Waiting, the next 

Ready thread with the highest priority becomes the Running 
thread.

• Waiting/Blocked:
– Waiting for an event to occur.

• Inactive/Terminated: 
– Not created or terminated.
– These threads typically consume no system resources.



Mbed OS EventQueue
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• Simple and powerful mechanism for running an event 
loop

• Periodic tasks can be posted to the queue
• The queue can be used for postponing the execution of 

a code sequence from an interrupt handler to a user 
context

• Events must be dispatched by a thread
• Documentation is available here

https://os.mbed.com/docs/mbed-os/v6.16/apis/eventqueue.html


EventQueue principe
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Callback

Callback

Callback

Callback

Callback

Dispatch
_forever

Thread (main 
or separate)

call

Call_every

EventQueue



Thread synchronization
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• In a multitasking system, the different tasks may compete for shared resources or 
may wait for different events to happen.

• In some cases, a given task may thus enter a Waiting or Blocked state.
• There are in fact multiple Waiting states:

– WaitingEventFlag: Waiting for a event flag to be set.
– WaitingMutex: waiting for a mutex event to occur.
– WaitingSemaphore: Waiting for a semaphore event to occur.
– WaitingThreadFlag: Waiting for a thread flag to be set.
– WaitingMemoryPool: Waiting for a memory pool.
– WaitingMessageGet: Waiting for message to arrive.
– WaitingMessagePut: Waiting for message to be sent.
– WaitingDelay: Waiting for a delay to occur.



Events
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• Events are useful for waiting for specific conditions
– One thread waits for a specific condition to be met

• The condition can be made of one specific flag or a combination (AND/OR) of flags
• Wait with timeout is also possible

– Another thread notifies (sets) the specific condition
– No busy waiting !

• In MbedOS, events are made available through the EventFlags API.
• Codelab: Using EventFlags for Waiting for an Event

https://os.mbed.com/docs/mbed-os/v6.16/apis/eventflags.html
https://os.mbed.com/docs/mbed-os/v6.2/apis/eventflags.html
https://advembsof.isc.heia-fr.ch/codelabs/multi-tasking/#using-eventflags-for-waiting-for-an-event


Mutex
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• Even on uniprocessor systems, there is a need for protection when sharing resources
• Mutex controls the access to shared resources

– Enforces that only one thread of execution can have access to a section of code (called the 
critical section)

– Needs to care about deadlock or starvation
• Be careful when entering more than one mutex
• Always release a mutex after use

• RTX/Mbed OS implements the priority inheritance scheme
– No priority ceiling

• Codelabs:
Shared Resources and Mutual Exclusion
Deadlock

https://advembsof.isc.heia-fr.ch/codelabs/multi-tasking/#shared-resources-and-mutual-exclusion
https://advembsof.isc.heia-fr.ch/codelabs/multi-tasking/#deadlock


Dealing with Deadlock
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• Ostrich algorithm (very famous!)
• Deadlock prevention: if any of the Coffman conditions are false

– Mutex is inevitable
– Request all resources at the beginning– either pick two forks at the same time or wait / all-or-none
– Preemption is inevitable
– Prevent circular wait condition: Resource hierarchy solution by Dijkstra (as the only practically avoidable 

condition)
• Deadlock avoidance

– Evaluate the chance of deadlock while allocating a resource. Grant or deny based on this information
– Banker’s algorithm

• Deadlock detection: what to do with the existing deadlock?
– Model checking

• Kill all or part of the deadlocked processes?
– Resource preemption?
– Restart? Watchdog for embedded system?



Semaphore
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• A semaphore manages thread access to a 
pool of shared resources of a certain type
– Unlike a mutex, a semaphore can control 

access to several shared resources
– For example, a semaphore enables access to 

and management of a group of identical 
peripherals

• Codelab: Shared Data and Semaphore

https://advembsof.isc.heia-fr.ch/codelabs/multi-tasking/#shared-data-and-semaphore


Queue / Mail
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• A Queue allows you to queue 
integer/pointers to data from producer 
threads to consumer threads

• A Mail works like a queue, but in addition it 
provides a memory pool for allocating 
messages

• Codelab: Shared Data and Queue

https://advembsof.isc.heia-fr.ch/codelabs/multi-tasking/#shared-data-and-queue
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