
TSM_AdvEmbSof
Scheduling for Embedded Systems
(Part I)
Serge Ayer | 12.10.2023 | Cours MSE

Models of Embedded Systems

2

• An embedded system is usually designed for a specific applications
– Monitor data from sensors or peripherals
– Generate signals to control internal or external devices
– Communicate data to the outside world

• Historically, programs of embedded systems have been written using a simple
structure such as:

– Super-loop
– Event-driven

• However, embedded systems are becoming more complex and need to cope with the
ever increasing demand for additional functionality

– Edge computing is becoming common
– Communication introduces another level of complexity/interaction

• Modern embedded systems require more powerful software and specifically require
scheduling of tasks

Bike computer example

3

• Consider a bike computer with the following functions:
– Bike gear: a value that the bike computer can read.
– Wheel rotation: with a sensor, counts the number of wheel rotations.
– Reset: with a button, reset timer and counters.
– Display: display the information on a LCD screen.

• In the following, we will investigate how to implement the bike
computer program:
– Implement different scheduling algorithms
– Evaluate some scheduling performances
– Implement the program with full RTOS support

Bike computer tasks

4

• Gear: read current gear from the gear
system.

• Speed/distance: read pedal rotation
time and traveled distance.

• Temperature: read temperature.
• Reset: check button for resetting the

computer.
• Display: Update LCD with new

information.

Scheduling Concepts

5

• Assume that
– We have one or more processing units;
– Different tasks to execute;
– Tasks are concurrent (can overlap in time);

• The CPU has to be assigned to the various tasks according to some criteria
• Scheduling algorithm = set of rules that, at any time, determines which task

is executed.
• Dispatching = allocation of the CPU to the task selected by the scheduling
• A task has, at any time, a specific state (ready/running/waiting).
• We will consider scheduling only for systems with one processing unit.

Scheduling concept

6

Task Preemption

7

• Suspend a running task and insert it in the ready queue
– Tasks may be executed in disjointed time intervals

• Important because
– Exception handling/interrupt may need to preempt existing tasks
– Schedule tasks based on their priority/importance
– Improve efficiency (higher processor utilization)

• Introduces a runtime overhead
– Should also be limited on a real-time system

Scheduling Constraints

8

• Scheduling must account for different types of
constraints
– Timing constraints
– Precedence constraints
– Resource constraints

• Very often, constraints are combined
– Timing and resource constraints

Timing Constraints

9

• The deadline is an important concept
– Time before which a task should complete its execution
– Relative: specified with respect to the task arrival time (as in diagram above)
– Absolute: specified with respect to time zero

• Real-time tasks are often distinguished in three categories
– Hard real-time: missing the deadline cause catastrophic consequences on the

system.
– Firm real-time: missing the deadline does not cause any damage to the system

but the output of the task has no value.
– Soft real-time: missing the deadline has still some utility for the system, although

causing a performance degradation.

Timing Constraints

10

• Deadline (D)
• Arrival/release time (a or r): time at which a task becomes ready for execution
• Start time (s): time at which a task starts its execution
• Finishing time (f): time at which a tasks finishes its execution
• Computation time (C): time necessary to the processor for executing the task (without

interruption)
• Criticality: consequences of missing the deadline
• A set of tasks is said to be schedulable if all tasks can finish within their deadlines.

Task Classification by Release Rate

11

• Periodic or time-driven tasks:
– Arriving at fixed frequency (defined by the period T)
– Often T = D
– For instance for sensory data acquisition or system monitoring

• Aperiodic or event-driven tasks:
– Generated by interrupts

• Sporadic tasks
– Aperiodic tasks with minimum inter-arrival time

• Background tasks
– Non real-time tasks, accomplished only if CPU time is available

Periodic vs. Aperiodic Tasks

12

• Periodic tasks

• Aperiodic tasks

Precedence Constraints

13

• Precedence relations among tasks
– Known at design time
– Often represented through a directed acyclic graph

• Example:
– Stereo vision system
– Some tasks (e.g. image capture and pre-processing) can be executed in parallel for each

camera.
– Some other tasks must wait for the result of a preceding task (e.g. pre-processing must wait

for image capture, edge detection must wait for pre-processing).

• The graph representing the tasks dependencies defines scheduling
constraints

Resource Constraints

14

• Resource = any software structure that can be used by a task during its
execution.

– A variable
– A memory area
– A peripheral device

• Resources can be private (used by a single task) or shared (used by
several tasks).

• Many shared resources do not allow simultaneous access by competing
tasks and require mutual exclusions

– A critical section is a piece of code executed under mutual exclusion
– Most OSs provide synchronization mechanisms for creating critical sections and for

synchronizing tasks that need to access shared resources

Metrics for Performance Evaluation

15

• Average Response Time
– Time difference between the time a task is finished and the time a task is released
– Task response time = f − 𝑎𝑎 or f − 𝑟𝑟

• Maximum Lateness
– Defined as 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 (𝑓𝑓𝑖𝑖−𝑑𝑑𝑖𝑖)

• Maximum number of late tasks
– 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = ∑𝑖𝑖=1𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝑖𝑖)

– 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑖𝑖 = �0 𝑖𝑖𝑖𝑖 𝑓𝑓𝑖𝑖 ≤ 𝑑𝑑𝑖𝑖
1 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

• Processor Utilization Factor
Fraction of processor time spent
in the execution of a task set

Classification of Scheduling Algorithms

16

• Preemptive vs. Non-preemptive
– Preemptive = the running task can be interrupted at any time.
– Non-preemptive = the running task is executed until completion.

• Static vs. Dynamic
– Static = scheduling based on fixed parameters assigned to tasks before their activation.

• Off-line vs. Online
– Off-line = scheduling is computed before tasks are activated, stored in a schedule table and

simply executed by a dispatcher.
– Online = scheduling is computed every time a new task is activated, preempted or

terminated.

• Optimal vs. Heuristic
– Optimal = minimizes a given cost function or implements a feasible schedule
– Heuristic = does not guarantee that the scheduling is optimal

Periodic Task Scheduling

17

• Scheduling must guarantee that each task is activated at the proper rate and is
completed within its deadline.

• Four basic most-known algorithms:
– Timeline Cyclic Scheduling
– Rate Monotonic
– Earliest Deadline First
– Deadline Monotonic

• When evaluating those algorithms, usually some assumptions are made:
– The period of each tasks is constant
– The worst-case execution time is constant
– The deadline of each task is the same as its period
– All tasks are independent and no precedence/resource constraint exists

• A set of tasks is said to be schedulable if all tasks can finish within their deadlines.

Schedulability of Periodic Tasks

18

• Depends on Processor Utilization Factor
– Defined as U = ∑𝑖𝑖=1𝑛𝑛 𝐶𝐶𝑖𝑖

𝑇𝑇𝑖𝑖
– Can be increased by increasing task computation times or by decreasing their periods

• There exists a maximum value of U below which a set of tasks is
schedulable and above which it is not schedulable.

• This maximum value depends on the set of tasks AND on the
scheduling algorithm

Timeline Cyclic Scheduling

19

• Very often used for handling periodic tasks
• Method:

– Divide the temporal axis into slots of equal length (length = Minor Cycle)
– Allocate one or more tasks in each time slot
– At the beginning of each time slot, dispatch the tasks

• The optimal length of the Minor Cycle is the GCD of the periods
• When scheduling periodic tasks, the schedule will repeat itself at a

given interval rate (usually called the Hyperperiod/Major Cycle)
– The Hyperperiod is the Least Common Multiple (LCM) of all task periods

Timeline Cyclic Scheduling Feasibility

20

• If tasks cannot be split into sub-tasks, then a set of tasks is schedulable if
the sum of execution times within each time slot is less or equal to the Minor
Cycle

• Example:

�𝐶𝐶𝐴𝐴 + 𝐶𝐶𝐵𝐵 ≤ 24 𝑚𝑚𝑚𝑚
𝐶𝐶𝐴𝐴 + 𝐶𝐶𝐶𝐶 ≤ 24 𝑚𝑚𝑚𝑚

• If tasks can be split into sub-tasks, then a set of tasks is schedulable if the
sum of execution times is less or equal to the Major Cycle

Timeline Cyclic Scheduling

21

• The Minor Cycle is 200 ms, the Major Cycle is 1200 ms
• Is this set of tasks schedulable ?

– Does the sum of computing times over a Major Cycle fit ?
– G: 2 x 100 ms = 200 ms, C: 3 x 200 ms = 600 ms, R: 2 x 100 ms = 200 ms, D: 1 x 200 ms = 200 ms
– Total computing time is 1200 ms (U = 1)

Timeline Cyclic Scheduling

22

Timeline Cyclic Scheduling

23

Timeline Cyclic Scheduling

24

Timeline Cyclic Scheduling

25

Timeline Cyclic Scheduling

26

• The tasks in the timetable are run in a super-loop
• Recall: all tasks are considered to be periodic

– Event-based tasks are turned to tasks with polling

• A super-loop is a program structure composed of an infinite loop, with all the tasks of
the system contained in the loop, with the general form

main() {
system_initialization();
while (true) {
check_device_status();
process_device_data();
output_response();

}
}

main() {
system_initialization();
while (true) {
gear();
count();
display-1();
reset();
count();
…

}
}

Timeline Cyclic Scheduling - Super-loop

27

• Advantages:
– Easy to implement, predictable

• Disadvantages:
– May be difficult to build the time table, that can be very large.

• Tasks may be split in multiple sub-tasks.
• All tasks run at the same rate or changing rates requires adding extra calls to functions.

– Always run the same schedule
• Regardless of changing conditions and relative importance of tasks.

– The maximum delay is the Major Cycle time
• Thus the polling rate is limited by 1/maximum delay.

– The program must continually check the status of every device
• Even if the device status has not changed or is not ready.
• This wastes a lot of CPU time and causes excessive power consumption.

– This approach scales badly:
• It is very difficult to build a system with multiple activities/events that can respond quickly and the system’s response time

depends on all other processing that it has to do.

Timeline Scheduling Response Time

28

• What if the current gear is changed right after Reset starts?

• Delays !
– Have to wait for a task period before we may read the gear again.
– Have to wait for more than one full cycle before the new gear is displayed.
– Although it may be considered as acceptable in this particular case, it is easy to think of scenarios where

such a behavior would be problematic.

Our Bike Computer Implementations

29

• The implementations are accomplished in the multiple parts of the Bike
Computer codelab, first as a single-task program (no context switching)

• Part 1: (without context switching)
– Implement the classes representing the different tasks
– Implement a timeline/cyclic static scheduling of tasks

• Part 2: (without context switching)
– Implement the mechanism for event-driven handling of non periodic tasks

• Part 3: with multiple threads and context switching
– Implement periodic tasks in multiple threads
– Implement several scheduling mechanisms for periodic tasks

https://advembsof.isc.heia-fr.ch/codelabs/bike-computer-part1/
https://advembsof.isc.heia-fr.ch/codelabs/bike-computer-part2/
https://advembsof.isc.heia-fr.ch/codelabs/bike-computer-part3/

	Slide Number 1
	Models of Embedded Systems
	Bike computer example
	Bike computer tasks
	Scheduling Concepts
	Scheduling concept
	Task Preemption
	Scheduling Constraints
	Timing Constraints
	Timing Constraints
	Task Classification by Release Rate
	Periodic vs. Aperiodic Tasks
	Precedence Constraints
	Resource Constraints
	Metrics for Performance Evaluation
	Classification of Scheduling Algorithms
	Periodic Task Scheduling
	Schedulability of Periodic Tasks
	Timeline Cyclic Scheduling
	Timeline Cyclic Scheduling Feasibility
	Timeline Cyclic Scheduling
	Timeline Cyclic Scheduling
	Timeline Cyclic Scheduling
	Timeline Cyclic Scheduling
	Timeline Cyclic Scheduling
	Timeline Cyclic Scheduling
	Timeline Cyclic Scheduling - Super-loop
	Timeline Scheduling Response Time
	Our Bike Computer Implementations

