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Models of Embedded Systems
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• An embedded system is usually designed for a specific applications
– Monitor data from sensors or peripherals
– Generate signals to control internal or external devices
– Communicate data to the outside world

• Historically, programs of embedded systems have been written using a simple 
structure such as:

– Super-loop
– Event-driven

• However, embedded systems are becoming more complex and need to cope with the 
ever increasing demand for additional functionality

– Edge computing is becoming common
– Communication introduces another level of complexity/interaction

• Modern embedded systems require more powerful software and specifically require 
scheduling of tasks



Bike computer example
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• Consider a bike computer with the following functions:
– Bike gear: a value that the bike computer can read.
– Wheel rotation: with a sensor, counts the number of wheel rotations.
– Reset: with a button, reset timer and counters.
– Display: display the information on a LCD screen.

• In the following, we will investigate how to implement the bike 
computer program:
– Implement different scheduling algorithms
– Evaluate some scheduling performances
– Implement the program with full RTOS support



Bike computer tasks
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• Gear: read current gear from the gear 
system. 

• Speed/distance: read pedal rotation 
time and traveled distance.

• Temperature: read temperature.
• Reset: check button for resetting the 

computer. 
• Display: Update LCD with new 

information.



Scheduling Concepts
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• Assume that
– We have one or more processing units;
– Different tasks to execute;
– Tasks are concurrent (can overlap in time);

• The CPU has to be assigned to the various tasks according to some criteria
• Scheduling algorithm = set of rules that, at any time, determines which task 

is executed.
• Dispatching = allocation of the CPU to the task selected by the scheduling
• A task has, at any time, a specific state (ready/running/waiting).
• We will consider scheduling only for systems with one processing unit.



Scheduling concept
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Task Preemption
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• Suspend a running task and insert it in the ready queue
– Tasks may be executed in disjointed time intervals

• Important because
– Exception handling/interrupt may need to preempt existing tasks
– Schedule tasks based on their priority/importance
– Improve efficiency (higher processor utilization)

• Introduces a runtime overhead
– Should also be limited on a real-time system



Scheduling Constraints
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• Scheduling must account for different types of 
constraints
– Timing constraints
– Precedence constraints
– Resource constraints

• Very often, constraints are combined
– Timing and resource constraints



Timing Constraints
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• The deadline is an important concept
– Time before which a task should complete its execution
– Relative: specified with respect to the task arrival time (as in diagram above)
– Absolute: specified with respect to time zero

• Real-time tasks are often distinguished in three categories
– Hard real-time: missing the deadline cause catastrophic consequences on the 

system.
– Firm real-time: missing the deadline does not cause any damage to the system 

but the output of the task has no value.
– Soft real-time: missing the deadline has still some utility for the system, although 

causing a performance degradation.



Timing Constraints
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• Deadline (D)
• Arrival/release time (a or r): time at which a task becomes ready for execution
• Start time (s): time at which a task starts its execution
• Finishing time (f): time at which a tasks finishes its execution
• Computation time (C): time necessary to the processor for executing the task (without 

interruption)
• Criticality: consequences of missing the deadline
• A set of tasks is said to be schedulable if all tasks can finish within their deadlines.



Task Classification by Release Rate

11

• Periodic or time-driven tasks:
– Arriving at fixed frequency (defined by the period T)
– Often T = D
– For instance for sensory data acquisition or system monitoring

• Aperiodic or event-driven tasks:
– Generated by interrupts

• Sporadic tasks
– Aperiodic tasks with minimum inter-arrival time

• Background tasks
– Non real-time tasks, accomplished only if CPU time is available



Periodic vs. Aperiodic Tasks
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• Periodic tasks

• Aperiodic tasks



Precedence Constraints
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• Precedence relations among tasks
– Known at design time
– Often represented through a directed acyclic graph

• Example:
– Stereo vision system
– Some tasks (e.g. image capture and pre-processing) can be executed in parallel for each 

camera.
– Some other tasks must wait for the result of a preceding task (e.g. pre-processing must wait 

for image capture, edge detection must wait for pre-processing).

• The graph representing the tasks dependencies defines scheduling 
constraints



Resource Constraints
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• Resource = any software structure that can be used by a task during its 
execution.

– A variable
– A memory area
– A peripheral device

• Resources can be private (used by a single task) or shared (used by 
several tasks).

• Many shared resources do not allow simultaneous access by competing 
tasks and require mutual exclusions

– A critical section is a piece of code executed under mutual exclusion
– Most OSs provide synchronization mechanisms for creating critical sections and for 

synchronizing tasks that need to access shared resources



Metrics for Performance Evaluation
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• Average Response Time
– Time difference between the time a task is finished and the time a task is released
– Task response time = f − 𝑎𝑎 or f − 𝑟𝑟

• Maximum Lateness
– Defined as 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 (𝑓𝑓𝑖𝑖−𝑑𝑑𝑖𝑖)

• Maximum number of late tasks
– 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = ∑𝑖𝑖=1𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝑖𝑖)

– 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑖𝑖 = �0 𝑖𝑖𝑖𝑖 𝑓𝑓𝑖𝑖 ≤ 𝑑𝑑𝑖𝑖
1 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

• Processor Utilization Factor
Fraction of processor time spent 
in the execution of a task set



Classification of Scheduling Algorithms
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• Preemptive vs. Non-preemptive
– Preemptive = the running task can be interrupted at any time.
– Non-preemptive = the running task is executed until completion.

• Static vs. Dynamic
– Static = scheduling based on fixed parameters assigned to tasks before their activation.

• Off-line vs. Online
– Off-line = scheduling is computed before tasks are activated, stored in a schedule table and 

simply executed by a dispatcher.
– Online = scheduling is computed every time a new task is activated, preempted or 

terminated.

• Optimal vs. Heuristic
– Optimal = minimizes a given cost function or implements a feasible schedule
– Heuristic = does not guarantee that the scheduling is optimal



Periodic Task Scheduling
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• Scheduling must guarantee that each task is activated at the proper rate and is 
completed within its deadline.

• Four basic most-known algorithms:
– Timeline Cyclic Scheduling
– Rate Monotonic
– Earliest Deadline First
– Deadline Monotonic

• When evaluating those algorithms, usually some assumptions are made:
– The period of each tasks is constant
– The worst-case execution time is constant
– The deadline of each task is the same as its period
– All tasks are independent and no precedence/resource constraint exists

• A set of tasks is said to be schedulable if all tasks can finish within their deadlines.



Schedulability of Periodic Tasks
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• Depends on Processor Utilization Factor
– Defined as U = ∑𝑖𝑖=1𝑛𝑛 𝐶𝐶𝑖𝑖

𝑇𝑇𝑖𝑖
– Can be increased by increasing task computation times or by decreasing their periods

• There exists a maximum value of U below which a set of tasks is 
schedulable and above which it is not schedulable.

• This maximum value depends on the set of tasks AND on the 
scheduling algorithm



Timeline Cyclic Scheduling
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• Very often used for handling periodic tasks
• Method:

– Divide the temporal axis into slots of equal length (length = Minor Cycle)
– Allocate one or more tasks in each time slot
– At the beginning of each time slot, dispatch the tasks

• The optimal length of the Minor Cycle is the GCD of the periods
• When scheduling periodic tasks, the schedule will repeat itself at a 

given interval rate (usually called the Hyperperiod/Major Cycle)
– The Hyperperiod is the Least Common Multiple (LCM) of all task periods



Timeline Cyclic Scheduling Feasibility
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• If tasks cannot be split into sub-tasks, then a set of tasks is schedulable if 
the sum of execution times within each time slot is less or equal to the Minor 
Cycle

• Example:

�𝐶𝐶𝐴𝐴 + 𝐶𝐶𝐵𝐵 ≤ 24 𝑚𝑚𝑚𝑚
𝐶𝐶𝐴𝐴 + 𝐶𝐶𝐶𝐶 ≤ 24 𝑚𝑚𝑚𝑚

• If tasks can be split into sub-tasks, then a set of tasks is schedulable if the 
sum of execution times is less or equal to the Major Cycle



Timeline Cyclic Scheduling
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• The Minor Cycle is 200 ms, the Major Cycle is 1200 ms
• Is this set of tasks schedulable ?

– Does the sum of computing times over a Major Cycle fit ?
– G: 2 x 100 ms = 200 ms, C: 3 x 200 ms = 600 ms, R: 2 x 100 ms = 200 ms, D: 1 x 200 ms = 200 ms
– Total computing time is 1200 ms (U = 1)



Timeline Cyclic Scheduling
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Timeline Cyclic Scheduling
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Timeline Cyclic Scheduling
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Timeline Cyclic Scheduling
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Timeline Cyclic Scheduling
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• The tasks in the timetable are run in a super-loop
• Recall: all tasks are considered to be periodic

– Event-based tasks are turned to tasks with polling

• A super-loop is a program structure composed of an infinite loop, with all the tasks of 
the system contained in the loop, with the general form

main() {
system_initialization();
while (true) {
check_device_status();
process_device_data();
output_response();

}
}

main() {
system_initialization();
while (true) {
gear();
count();
display-1();
reset();
count();
…

}
}



Timeline Cyclic Scheduling - Super-loop
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• Advantages:
– Easy to implement, predictable

• Disadvantages:
– May be difficult to build the time table, that can be very large.

• Tasks may be split in multiple sub-tasks.
• All tasks run at the same rate or changing rates requires adding extra calls to functions.

– Always run the same schedule
• Regardless of changing conditions and relative importance of tasks.

– The maximum delay is the Major Cycle time
• Thus the polling rate is limited by 1/maximum delay.

– The program must continually check the status of every device
• Even if the device status has not changed or is not ready. 
• This wastes a lot of CPU time and causes excessive power consumption.

– This approach scales badly: 
• It is very difficult to build a system with multiple activities/events that can respond quickly and the system’s response time 

depends on all other processing that it has to do.



Timeline Scheduling Response Time 

28

• What if the current gear is changed right after Reset starts?

• Delays !
– Have to wait for a task period before we may read the gear again.
– Have to wait for more than one full cycle before the new gear is displayed.
– Although it may be considered as acceptable in this particular case, it is easy to think of scenarios where 

such a behavior would be problematic.



Our Bike Computer Implementations

29

• The implementations are accomplished in the multiple parts of the Bike 
Computer codelab, first as a single-task program (no context switching)

• Part 1: (without context switching)
– Implement the classes representing the different tasks
– Implement a timeline/cyclic static scheduling of tasks

• Part 2: (without context switching)
– Implement the mechanism for event-driven handling of non periodic tasks

• Part 3: with multiple threads and context switching
– Implement periodic tasks in multiple threads
– Implement several scheduling mechanisms for periodic tasks

https://advembsof.isc.heia-fr.ch/codelabs/bike-computer-part1/
https://advembsof.isc.heia-fr.ch/codelabs/bike-computer-part2/
https://advembsof.isc.heia-fr.ch/codelabs/bike-computer-part3/
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