M s — MASTER OF SCIENCE
| IN ENGINEERING

TSM_AdvEmbSof
Introduction

swissuniversities Serge Ayer | 01.09.2023 | Cours MSE



Some administrative matters

 Proposed schedule
— 14h45-15h30 + 15h35-16h20 + 16h30-17h15

 Resources
— Site: https://advembsof.isc.heia-fr.ch
— Development kit, software
— Moodle is not used for this lecture
* Project
— At the end of the semester, you have to deliver the source code of a project.
— Working in team of 2 students.
— The project is evaluated and students may get a bonus to their grade (written exam).

swissuniversities Hes:so
2 Master



Course content

1 TSM_AdvEmbSof : Advanced Embedded Software

Info Documentation Lecture Codelabs Exercices Project

. Entire content available on the lecture website

. Lecture
. Content delivered on slides
. Codelabs

*  Guided, hands-on coding
*  Some parts may be hidden at first, with solution made available after two-three weeks
. Exercises
. Addressing specific problems
*  Solutions made available after two-three weeks
. Project
. To be implemented based on codelabs and exercises
. Implemented in 2-3 phases, delivered on GitHub with possible issues to be fixed in each phase

swissuniversities Hes:so
3 Master



Introduction to Embedded Systems

« What is an embedded system?

— Application-specific computer system

— Often with real-time computing constraints
 What is the motivation for building an embedded system?

Interacting with its environment
Built into a larger system

Better performance

More functions and features

Lower cost e.g. through automation
More dependable

Lower power

swissuniversities

Hes-so

Master



Introduction to Embedded Systems

Embedded
System

Macroscopic view on a device level

swissunjversities

Embedded Computer

Input from Output to
Environment Hardware Environment

User Interface Link to
Other Systems

Microscopic view on a functionality level

Hes-so

5 Master



Applications for Embedded Systems

* Closed-loop control system

— Monitor and (pre)process a system state, adjust an output to maintain a desired
set point (temperature, speed, direction, etc.)

— Edge (pre-)processing: remove noise, select desired signal features
* Sequencing

— Step through different stages based on environment and system
« Communications and networking

— Exchange information reliably and quickly
« Part of a larger system

— Taking over very specialized functions as part of a larger system, e.g. fault
handling, handling networking

swissuniversities Hes:so
6 Master



Example of Embedded System: Bike Computer

Inputs: Input:
Functions: ' Wheel rotation
- Wheel rotation indicator Mode key
- Speed measurement

. - Mode key
- Distance measurement
Output:

Constraints: - Liquid crystal display

Size

Cost Use low-performance

Power and energy microcontroller: Output:

. - 9-bit, 10 MIPS Display speed and
Weight distance
swissuniversities Hes:so

Master



Another Example: Gasoline Automobile Engine Control Unit

Functions:

Fuel injection Many inputs and outputs: PowseTraln  Infotainment

‘. : . « Engine control  * gﬂlh‘d‘?rd Metworking
Air intake setting - Discrete sensors and e in] it s +CAN

0 __.Qa -Knock control  * Entertainment ;
Spark timing actuators CHEVIEV: mator  + TSIGRS! At ire
. Cliamaia « Transmission = Car navigation display « MOST*
Exhaust gas circulation Network interface to « Steering/EPS* + Bluetooth
reSt Of car :ﬁaﬁﬁ:ntrul

Electranic System

Electronic throttle
« Alternator, battery

+ Suspension
+ Chassis control

control & starter
« Lighting
Safety and Control L5 * Diagnostics
» Airbag Comfort and Control s In-car data bus
+ TPMS! + Power door
« Collision warning » Power window
+ Parking assistant + Clirnate control
+ Back monitor + Seat controls
Constraints- + Night vision + Mirror & wiper control
R I blt 9 h h Use h |gh'perf0rmance 1 H:.rblild electric vehi:ialfelecmc wehicle 5Medial-orisnled syslgmstranspon
- nelablity in nars microcontroller: gioryi-esepiro ok
environment . 3 Controller area network & Tire-pressure monitoning system
= Eg 32-bit, 3 MB flash 4 Lecalinterconnect network e

Cost

memory, 50-300 MHz
Size

Hes-so

swissuniversities
Master



An Embedded System is more than a Processor

« A microprocessor (CPU) is defined as a processor core that
supports instruction fetching, decoding and executing.
— It can be used for general-purpose computing
— But it needs to be supported with memory and inputs/outputs (I/O) !

Instruction fetcher Memory Interface To
_ memory
Instruction decoder E blocks
Register banks
y
Microprocessor
swissuniversities Hes-so

9 Master



Attributes of Embedded Systems

« Interfacing with larger systems and environments
— Analog signals for reading sensors
Typically use a voltage to represent a physical value
— Power electronics for driving motors, solenoids
— Digital interfaces for communicating with other digital devices
Simple — switches
Complex — displays
« Concurrent and reactive behaviors
— Must respond to sequences and combinations of events
— Real-time systems have deadlines on responses
— Typically must perform multiple separate activities concurrently

swissuniversities
10

Hes-so

Master



Attributes of Embedded Systems

« Fault handling
— Many systems must operate independently for long periods of time
— Requires them to handle faults without crashing
— Often, fault-handling code is larger and more complex than the normal-case code

« Diagnostics
— Help service personnel determine problems quickly

swissuniversities Hes:so
11 Master



From a Processor to an Embedded System

 Embedded systems are often built using microcontrollers (MCU)
— Typically has a single processor core
— Has memory blocks, digital and analog I0s, other peripherals

icroprocessor (CPU Program Memory

System Bus

Digital 10 Analog 10 ﬂ Other Peripheral

Microcontroller:

swissuniversities Hes:so
12 Master



Example of an Arm M4-MCU Architecture

APB subsystem

JTAG/ __. _ Interrupts
Serinl wire Cortex-M 3/ M4 P Watch dog
Integration

Dual timers

Timer

DMA-230

Timer

DMA option UART

UART

System Low Latency
Control GPIO LA

ey

Source: https://developer.arm.com/ip-products/subsystem/corstone-foundation-ip/cortex-m-system-design-kit

swissuniversities

Hes-so

Master



Options for Building Embedded Systems

Implementation Upgrades
& Bug Fixes

Discrete logic

ASIC

Dedicated
Hardware

Programmable logic —
FPGA, PLD

Microprocessor + memory
+ peripherals

Microcontroller (int.
memory & peripherals)

Software Running on
Generic Hardware

Embedded PC

Microcontroller based embedded system
swissuniversities




Benefits of Microcontroller-based Embedded Systems

» Greater performance and * More features
efficiency — May not be possible or practical
— Software makes it possible to with other approaches

provide sophisticated control

» Lower costs for mixed signal-
processing systems

— Less expensive components can — Adaptive system which can
be used compensate for failures

« Better dependability

— Overall costs reduced — Better diagnostics to improve

(manufacturing, operating and repair time
maintenance)

swissuniversities Hes:so
Master



Constraints of Microcontroller-based Embedded Systems

* Microcontrollers used (rather than microprocessors)

— Include peripherals to interface with other devices — is done in a specific way by
each manufacturer

— On-chip RAM, ROM reduces circuit board complexity and cost
 Programming language

— Programmed in the C language rather than Java (resulting in smaller and faster

code — less expensive MCU)

— Some performance-critical code may be in assembly language
* Operating system

— Typically no OS used, but instead a simple scheduler

— If OS is used, it is likely to be a lean RTOS

swissuniversities Hes:so
Master



As a summary, why Microcontroller-based Embedded Systems?

* In most embedded systems, MCUs are the best solution as they offer:

Low development and manufacturing cost
Easy porting and updating

Light footprint

Relatively low power consumption
Satisfactory performance for low-end products

* In our lab sessions, we will learn some fundamentals of developing for
embedded systems with a MCU-based prototyping platform, using the Mbed
platform that contains a RTOS

swissuniversities Hes:so

Master



Internet of Things (loT) and Embedded Systems

» |oT generally refers to a world in which a large range of objects are
addressable via a network

Objects can include:

Why loT? Smart buildings and home

appliances

* Items can have more
functionality and become more
intelligent

Fridges, TVs, cookers

Civil engineering structures

Iltems can be managed more
easily

*  Bridges, railways

Wearable devices

More information becomes

. Smart watches, glasses
available

Medical devices

Smart inhaler, embedded
pills

swissuniversities



Internet of Things: Why Now?

Embedded chips are becoming:
— Cheaper
— Smaller
— Lower power

Energy harvesting

Communication is becoming faster and
more efficient

Number of embedded systems

swissuniversities Hes:so
Master



Embedded Systems and OS

« Should we use an OS for programming vser

embedded systems? I I

 An OS provides an abstraction of the Hardware

— Hardware is detailed and specific to every manufacturer,
e.g. for MCUs. f I
— Manipulating hardware requires not only programming
knowledge, but also understanding of the hardware. Operating System
— Should the programmer have to care about the detailed
of each hardware? ¥ 1

— She/he can be more productive by using an abstraction
layer Hardware

Application

swissuniversities Hes:so
20 Master



Program structures of Embedded Systems

« ltis possible to implement everything in a long sequential infinite loop
(super-loop model)
— Implies a lot of shortcomings
* Improving the structure with an event-driven model
— Instead of continuously checking for inputs, take actions in response to events

— Since many inputs are unpredictable, this model allows the main program to wait
for any event to occur and take action when it occurs.

— But events can have different priorities and the system needs to provide a
solution for handling priorities.
* For dealing with event priorities, implement event handlers as
iIndependent execution entities called processes or tasks.

Hes-so

swissuniversities
21 Master



Embedded systems and OS components

»  Process/Task/Thread management
— How to run a program?
— How to allocate resources?
— How to schedule and synchronize tasks?
*  Memory management
— Memory allocation
— Protection
—  Virtual memory
* File systems
— Secondary storage
- 1/0
— Device Drivers
*  Network

«  Security

swissuniversities Hes:so
22 Master



Embedded Systems and RTOS

 Embedded systems must often satisfy timing constraints.
 Two types:

— Hard real-time: ensures the critical tasks are to be completed on time.
— Soft real-time: if the deadline is not met, it is still worth finishing the task.

» Key design requirements for OS in embedded systems:
— Predictability and determinism
— Speed
— Responsiveness
— Fail-safety
« RTOS and EOS are not exactly the same, but most EOSs are RTOSs

swissuniversities Hes:so
23 Master



RTOS capabilities

* For meeting the timing requirements, RTOS are usually
designed with the following capabilities
— Minimum interrupt latency
— Short critical regions
— Preemptive task scheduling
— Advanced task scheduling algorithm

Hes-so

swissuniversities
24 Master



RTOS overview

« RTOS are designed to provide only limited functionalities intended for
specialized environments:

Much simpler than general purpose OS

Usually all tasks run in the same address space
No separate kernel and user modes

Only limited file systems, Ul or other functionalities
Due to the simplicity, easier to develop

« Large number of existing RTOS
« RTOS development is accelerated by the development of the loT

Many OS are targeting connected resource-constrained devices for loT applications

swissuniversities Hes:so

25 Master



A Short RTOS History

 Wikipedia lists over 50 different RTOSes !

» First differentiate themselves on license models and supported platforms
— Differences in the ecosystem (from kernel only to OS with many middleware components)

2019: FuSa RTS/RTX

e e ->
80’s: first Keil versions 2003: FreeRTOS 2009: RIOT 2016: CMSIS2/RTX 5
1987: VxWorks 2002: Contiki 2009: Mbed 0OS 2016: Zephyr OS
2016: TI-RTOS
swissuniversities Hes:so

26 Master


https://en.wikipedia.org/wiki/Comparison_of_real-time_operating_systems

Mbed OS overview

« Whatis Mbed OS?

— A platform used for the easy prototyping and development of
applications and systems based on Arm Cortex-M-based
microcontrollers, typically for use in the world of the Internet of Things

 The Mbed OS platform provides:
— Open software libraries
— Open hardware designs

— Open offline/online tools for professional rapid prototyping of products
based on Arm-based microcontrollers

swissuniversities Hes:so
27 Master



Mbed OS overview

« The Mbed platform includes:
— Mbed Operating System (Mbed OS)
— Libraries, RTOS core, HAL, API, and more

— A microcontroller Hardware Development Kit (HDK) and
supported development boards

— Integrated Development Environment (IDE), including an online
compiler and online developer collaboration tools

Hes-so

swissuniversities
28 Master



Mbed OS overview

swissuniversities

Cortex-M
RTOS Kernel

Developmen
t Tools

Management
Services

loT
Connectivity

Portable
Drivers

Integrated
Security

Hes so

Master



Mbed OS - Security

« Mbed provides two security-focused embedded building blocks:
— Arm Mbed TLS
— Secure Partition Manager (SPM)
« Mbed TLS is a protocol for securing communication channels
between devices and servers or gateways
* The secure partition manager is responsible for:
— Isolating software within partitions
— Managing the execution of software within partitions
— Providing Inter-Process Communication (IPC) between partitions

Hes-so

swissuniversities
30 Master



Mbed OS - Connectivity

« Mbed OS supports a number of connectivity protocols
— Paired with Pelion Device Management to provide full support for a range of
communication options
» Connectivity technologies include:
— NarrowBand-loT (NB-loT)
— Bluetooth Low Energy (BLE)
— 6LoWPAN
— Thread

swissuniversities Hes:so
31 Master



Mbed OS — Development tools

Mbed Studio

Mbed Online Compiler

Mbed CLI

swissuniversities Hes:so
ster



Mbed OS — Mbed Studio

* Integrated development environment (IDE) for Mbed OS 5/6
applications

Includes everything required to create, compile and debug Mbed
programs

Automatically detects connected Mbed enabled boards

Quick development for specific targets

Flashes code directly to connected platform

Provides debug session for debugging and profiling the target board

« Mbed Studio is also available as an online environment

swissuniversities Hes:so

33 Master



Mbed OS - Mbed CLI

 Arm Mbed CLI is a command-line tool packaged as
‘mbed-cli’ and based on Python.

« Enables Git and Mercurial-based version control, along
with dependency management, code publishing, support
for remotely hosted repositories, and use of the Arm
Mbed OS build system.

« Can be used in combination with Mbed Studio

swissuniversities Hes:so
34 Master



Mbed OS - Testing

« The Mbed platform offers a number of tools that support testing of your Mbed code
 Greentea
— Automated testing tool for Arm Mbed OS development
— Pair with 'UNITY" and 'utest' frameworks
— Greentea
* Icetea
— Automated testing tool for Arm Mbed OS development
— Typically used for local development and automation in a continuous integration environment
— lcetea

» Process of flashing boards, running the tests, and generating reports is automated by
the test system

swissuniversities Hes:so
35 Master


https://os.mbed.com/docs/mbed-os/v5.15/tools/greentea-testing-applications.html
https://os.mbed.com/docs/mbed-os/v5.15/tools/icetea-testing-applications.html

Mbed OS — Mbed Enabled Platforms

« The Arm® Mbed Enabled™ program outlines a set of functionality
and requirements that must be met in order to become “Mbed
Enabled”. This can cover development boards, modules,
components, and interfaces

— This benefits developers as they are assured that the platforms they choose to
work with can perform certain functions/provide certain performance

— It is also beneficial to the vendors as it allows their products more exposure when
certified, and enables their product to become more familiar with developers in
the Mbed eco-system ¥ [

« We will use a Mbed Enabled™ platform

swissunjversities
36


https://www.st.com/en/evaluation-tools/stm32h747i-disco.html

Mbed OS — Why C+?

» Advantages: e Advantages:
* Higher productivity (less development time) e More optimized code and memory efficient
* Portability across devices * Less translation time for source to machine
» Resulting code that is easier code to read and code
maintain

e Allows reuse of code * Directly talk to hardware

* Rapid prototyping of applications
e Disadvantages:

* Disadvantages: e Less portability from one device to another
e Less optimized code e Resulting code is more difficult for others to
» Additional translation time for source to machine read, reuse, and maintain
code e Low productivity

e Another level of abstraction to deal with

swissuniversities Hes:so
Master



Codelabs

 Link to all codelabs for this lecture
Codelabs for TSM AdvEmbSof -> follow the codelabs tab

« Start developing with Mbed OS and improve your C++

skills
Getting started with Mbed OS
C++ basics

« Blinky using low-level vs. high-level programming
High-level vs. Low-level programming

Hes-so

swissuniversities
38 Master


https://advembsof.isc.heia-fr.ch/
https://advembsof.isc.heia-fr.ch/codelabs/getting-started/
https://advembsof.isc.heia-fr.ch/codelabs/c%2B%2B-basics/
https://advembsof.isc.heia-fr.ch/codelabs/high-vs-low-level

	Slide Number 1
	Some administrative matters
	Course content
	Introduction to Embedded Systems
	Introduction to Embedded Systems
	Applications for Embedded Systems
	Example of Embedded System: Bike Computer
	Another Example: Gasoline Automobile Engine Control Unit
	An Embedded System is more than a Processor
	Attributes of Embedded Systems
	Attributes of Embedded Systems
	From a Processor to an Embedded System
	Example of an Arm M4-MCU Architecture
	Options for Building Embedded Systems
	Benefits of Microcontroller-based Embedded Systems
	Constraints of Microcontroller-based Embedded Systems
	As a summary, why Microcontroller-based Embedded Systems?
	Internet of Things (IoT) and Embedded Systems
	Internet of Things: Why Now?
	Embedded Systems and OS
	Program structures of Embedded Systems
	Embedded systems and OS components
	Embedded Systems and RTOS
	RTOS capabilities
	RTOS overview
	A Short RTOS History
	Mbed OS overview
	Mbed OS overview
	Mbed OS overview
	Mbed OS - Security
	Mbed OS - Connectivity
	Mbed OS – Development tools
	Mbed OS – Mbed Studio
	Mbed OS – Mbed CLI
	Mbed OS - Testing
	Mbed OS – Mbed Enabled Platforms
	Mbed OS – Why C+?
	Codelabs

