
TSM_AdvEmbSof
Introduction

Serge Ayer | 01.09.2023 | Cours MSE

Some administrative matters

2

• Proposed schedule
– 14h45-15h30 + 15h35-16h20 + 16h30-17h15

• Resources
– Site: https://advembsof.isc.heia-fr.ch
– Development kit, software
– Moodle is not used for this lecture

• Project
– At the end of the semester, you have to deliver the source code of a project.
– Working in team of 2 students.
– The project is evaluated and students may get a bonus to their grade (written exam).

Course content

3

• Entire content available on the lecture website
• Lecture

• Content delivered on slides
• Codelabs

• Guided, hands-on coding
• Some parts may be hidden at first, with solution made available after two-three weeks

• Exercises
• Addressing specific problems
• Solutions made available after two-three weeks

• Project
• To be implemented based on codelabs and exercises
• Implemented in 2-3 phases, delivered on GitHub with possible issues to be fixed in each phase

Introduction to Embedded Systems

4

• What is an embedded system?
– Application-specific computer system
– Interacting with its environment
– Built into a larger system
– Often with real-time computing constraints

• What is the motivation for building an embedded system?
– Better performance
– More functions and features
– Lower cost e.g. through automation
– More dependable
– Lower power

Introduction to Embedded Systems

5

Embedded
System

Macroscopic view on a device level

Embedded Computer
Software
Hardware

Output to
Environment

User Interface Link to
Other Systems

Input from
Environment

Microscopic view on a functionality level

Applications for Embedded Systems

6

• Closed-loop control system
– Monitor and (pre)process a system state, adjust an output to maintain a desired

set point (temperature, speed, direction, etc.)
– Edge (pre-)processing: remove noise, select desired signal features

• Sequencing
– Step through different stages based on environment and system

• Communications and networking
– Exchange information reliably and quickly

• Part of a larger system
– Taking over very specialized functions as part of a larger system, e.g. fault

handling, handling networking

Example of Embedded System: Bike Computer

Input:
Wheel rotation
Mode key

Output:
Display speed and
distance

Functions:
- Speed measurement
- Distance measurement

Constraints:
- Size
- Cost
- Power and energy
- Weight

Inputs:
- Wheel rotation indicator
- Mode key

Output:
- Liquid crystal display

Use low-performance
microcontroller:

- 9-bit, 10 MIPS

Another Example: Gasoline Automobile Engine Control Unit

Functions:
- Fuel injection
- Air intake setting
- Spark timing
- Exhaust gas circulation
- Electronic throttle

control
- Knock control

Constraints:
- Reliability in harsh

environment
- Cost
- Size

Many inputs and outputs:
- Discrete sensors and

actuators
- Network interface to

rest of car

Use high-performance
microcontroller:
- E.g. 32-bit, 3 MB flash

memory, 50-300 MHz

An Embedded System is more than a Processor

9

• A microprocessor (CPU) is defined as a processor core that
supports instruction fetching, decoding and executing.

– It can be used for general-purpose computing
– But it needs to be supported with memory and inputs/outputs (I/O) !

Instruction fetcher

Instruction decoder

Register banks

ALU

Memory Interface To
memory
blocks

Microprocessor

Attributes of Embedded Systems

10

• Interfacing with larger systems and environments
– Analog signals for reading sensors

• Typically use a voltage to represent a physical value

– Power electronics for driving motors, solenoids
– Digital interfaces for communicating with other digital devices

• Simple – switches
• Complex – displays

• Concurrent and reactive behaviors
– Must respond to sequences and combinations of events
– Real-time systems have deadlines on responses
– Typically must perform multiple separate activities concurrently

Attributes of Embedded Systems

11

• Fault handling
– Many systems must operate independently for long periods of time
– Requires them to handle faults without crashing
– Often, fault-handling code is larger and more complex than the normal-case code

• Diagnostics
– Help service personnel determine problems quickly

From a Processor to an Embedded System

12

• Embedded systems are often built using microcontrollers (MCU)
– Typically has a single processor core
– Has memory blocks, digital and analog IOs, other peripherals

Microprocessor (CPU)

Analog IO Timer Other PeripheralDigital IO

Program Memory Data Memory

System Bus

Microcontroller

Example of an Arm M4-MCU Architecture

Source: https://developer.arm.com/ip-products/subsystem/corstone-foundation-ip/cortex-m-system-design-kit

Options for Building Embedded Systems
D

ed
ic

at
ed

H

ar
dw

ar
e

S
of

tw
ar

e
R
un

ni
ng

 o
n

G
en

er
ic

 H
ar

dw
ar

e

Implementation Design
Cost

Unit
Cost

Upgrades
& Bug Fixes

Size Weight Power System
Speed

Discrete logic low mid hard large high ? very fast

ASIC high ($500K/
mask set)

very low hard tiny – 1 die very low low extremely fast

Programmable logic –
FPGA, PLD

low to mid mid easy small low medium to high very fast

Microprocessor + memory
+ peripherals

low to mid mid easy small to medium low to moderate medium moderate

Microcontroller (int.
memory & peripherals)

low mid to low easy small low medium slow to
moderate

Embedded PC low high easy medium moderate to high medium to high fast

Microcontroller based embedded system

• Greater performance and
efficiency

– Software makes it possible to
provide sophisticated control

• Lower costs for mixed signal-
processing systems

– Less expensive components can
be used

– Overall costs reduced
(manufacturing, operating and
maintenance)

• More features
– May not be possible or practical

with other approaches

• Better dependability
– Adaptive system which can

compensate for failures
– Better diagnostics to improve

repair time

Benefits of Microcontroller-based Embedded Systems

Constraints of Microcontroller-based Embedded Systems

• Microcontrollers used (rather than microprocessors)
– Include peripherals to interface with other devices – is done in a specific way by

each manufacturer
– On-chip RAM, ROM reduces circuit board complexity and cost

• Programming language
– Programmed in the C language rather than Java (resulting in smaller and faster

code – less expensive MCU)
– Some performance-critical code may be in assembly language

• Operating system
– Typically no OS used, but instead a simple scheduler
– If OS is used, it is likely to be a lean RTOS

As a summary, why Microcontroller-based Embedded Systems?

• In most embedded systems, MCUs are the best solution as they offer:
– Low development and manufacturing cost
– Easy porting and updating
– Light footprint
– Relatively low power consumption
– Satisfactory performance for low-end products

• In our lab sessions, we will learn some fundamentals of developing for
embedded systems with a MCU-based prototyping platform, using the Mbed
platform that contains a RTOS

Internet of Things (IoT) and Embedded Systems

• IoT generally refers to a world in which a large range of objects are
addressable via a network

Why IoT?

• Items can have more
functionality and become more
intelligent

• Items can be managed more
easily

• More information becomes
available

Objects can include:

• Smart buildings and home
appliances

• Fridges, TVs, cookers

• Civil engineering structures

• Bridges, railways

• Wearable devices

• Smart watches, glasses

• Medical devices

• Smart inhaler, embedded
pills

IoT

Internet of Things: Why Now?
• Embedded chips are becoming:

– Cheaper
– Smaller
– Lower power

• Energy harvesting

• Communication is becoming faster and
more efficient

Number of embedded systems

Price

Embedded Systems and OS

20

• Should we use an OS for programming
embedded systems?

• An OS provides an abstraction of the Hardware
– Hardware is detailed and specific to every manufacturer,

e.g. for MCUs.
– Manipulating hardware requires not only programming

knowledge, but also understanding of the hardware.
– Should the programmer have to care about the detailed

of each hardware?
– She/he can be more productive by using an abstraction

layer

Program structures of Embedded Systems

21

• It is possible to implement everything in a long sequential infinite loop
(super-loop model)

– Implies a lot of shortcomings
• Improving the structure with an event-driven model

– Instead of continuously checking for inputs, take actions in response to events
– Since many inputs are unpredictable, this model allows the main program to wait

for any event to occur and take action when it occurs.
– But events can have different priorities and the system needs to provide a

solution for handling priorities.

• For dealing with event priorities, implement event handlers as
independent execution entities called processes or tasks.

Embedded systems and OS components

22

• Process/Task/Thread management
– How to run a program?
– How to allocate resources?
– How to schedule and synchronize tasks?

• Memory management
– Memory allocation
– Protection
– Virtual memory

• File systems
– Secondary storage

• I/O
– Device Drivers

• Network
• Security

Embedded Systems and RTOS

23

• Embedded systems must often satisfy timing constraints.
• Two types:

– Hard real-time: ensures the critical tasks are to be completed on time.
– Soft real-time: if the deadline is not met, it is still worth finishing the task.

• Key design requirements for OS in embedded systems:
– Predictability and determinism
– Speed
– Responsiveness
– Fail-safety

• RTOS and EOS are not exactly the same, but most EOSs are RTOSs

RTOS capabilities

24

• For meeting the timing requirements, RTOS are usually
designed with the following capabilities
– Minimum interrupt latency
– Short critical regions
– Preemptive task scheduling
– Advanced task scheduling algorithm

RTOS overview

25

• RTOS are designed to provide only limited functionalities intended for
specialized environments:

– Much simpler than general purpose OS
– Usually all tasks run in the same address space
– No separate kernel and user modes
– Only limited file systems, UI or other functionalities
– Due to the simplicity, easier to develop

• Large number of existing RTOS
• RTOS development is accelerated by the development of the IoT

– Many OS are targeting connected resource-constrained devices for IoT applications

A Short RTOS History

26

• Wikipedia lists over 50 different RTOSes !
• First differentiate themselves on license models and supported platforms

– Differences in the ecosystem (from kernel only to OS with many middleware components)

1987: VxWorks 2016: Zephyr OS

2016: TI-RTOS

2003: FreeRTOS

2002: Contiki 2009: Mbed OS

2016: CMSIS2/RTX 580’s: first Keil versions

2019: FuSa RTS/RTX

2009: RIOT

https://en.wikipedia.org/wiki/Comparison_of_real-time_operating_systems

Mbed OS overview

27

• What is Mbed OS?
– A platform used for the easy prototyping and development of

applications and systems based on Arm Cortex-M-based
microcontrollers, typically for use in the world of the Internet of Things

• The Mbed OS platform provides:
– Open software libraries
– Open hardware designs
– Open offline/online tools for professional rapid prototyping of products

based on Arm-based microcontrollers

Mbed OS overview

28

• The Mbed platform includes:
– Mbed Operating System (Mbed OS)
– Libraries, RTOS core, HAL, API, and more
– A microcontroller Hardware Development Kit (HDK) and

supported development boards
– Integrated Development Environment (IDE), including an online

compiler and online developer collaboration tools

Mbed OS overview

29

Mbed
OS

Cortex-M
RTOS Kernel

Portable
Drivers

Integrated
Security

IoT
Connectivity

Management
Services

Developmen
t Tools

Mbed OS - Security

30

• Mbed provides two security-focused embedded building blocks:
– Arm Mbed TLS
– Secure Partition Manager (SPM)

• Mbed TLS is a protocol for securing communication channels
between devices and servers or gateways

• The secure partition manager is responsible for:
– Isolating software within partitions
– Managing the execution of software within partitions
– Providing Inter-Process Communication (IPC) between partitions

Mbed OS - Connectivity

31

• Mbed OS supports a number of connectivity protocols
– Paired with Pelion Device Management to provide full support for a range of

communication options

• Connectivity technologies include:
– NarrowBand-IoT (NB-IoT)
– Bluetooth Low Energy (BLE)
– 6LoWPAN
– Thread

Mbed OS – Development tools

32

Mbed Studio

Mbed Online Compiler

Mbed CLI

Mbed OS – Mbed Studio

33

• Integrated development environment (IDE) for Mbed OS 5/6
applications
– Includes everything required to create, compile and debug Mbed

programs
– Automatically detects connected Mbed enabled boards
– Quick development for specific targets
– Flashes code directly to connected platform
– Provides debug session for debugging and profiling the target board

• Mbed Studio is also available as an online environment

Mbed OS – Mbed CLI

34

• Arm Mbed CLI is a command-line tool packaged as
‘mbed-cli’ and based on Python.

• Enables Git and Mercurial-based version control, along
with dependency management, code publishing, support
for remotely hosted repositories, and use of the Arm
Mbed OS build system.

• Can be used in combination with Mbed Studio

Mbed OS - Testing

35

• The Mbed platform offers a number of tools that support testing of your Mbed code
• Greentea

– Automated testing tool for Arm Mbed OS development
– Pair with 'UNITY' and 'utest' frameworks
– Greentea

• Icetea
– Automated testing tool for Arm Mbed OS development
– Typically used for local development and automation in a continuous integration environment
– Icetea

• Process of flashing boards, running the tests, and generating reports is automated by
the test system

https://os.mbed.com/docs/mbed-os/v5.15/tools/greentea-testing-applications.html
https://os.mbed.com/docs/mbed-os/v5.15/tools/icetea-testing-applications.html

Mbed OS – Mbed Enabled Platforms

36

• The Arm® Mbed Enabled™ program outlines a set of functionality
and requirements that must be met in order to become “Mbed
Enabled”. This can cover development boards, modules,
components, and interfaces

– This benefits developers as they are assured that the platforms they choose to
work with can perform certain functions/provide certain performance

– It is also beneficial to the vendors as it allows their products more exposure when
certified, and enables their product to become more familiar with developers in
the Mbed eco-system

• We will use a STM Mbed Enabled™ platform

https://www.st.com/en/evaluation-tools/stm32h747i-disco.html

Mbed OS – Why C+?

37

Codelabs

38

• Link to all codelabs for this lecture
Codelabs for TSM_AdvEmbSof -> follow the codelabs tab

• Start developing with Mbed OS and improve your C++
skills

Getting started with Mbed OS
C++ basics

• Blinky using low-level vs. high-level programming
High-level vs. Low-level programming

https://advembsof.isc.heia-fr.ch/
https://advembsof.isc.heia-fr.ch/codelabs/getting-started/
https://advembsof.isc.heia-fr.ch/codelabs/c%2B%2B-basics/
https://advembsof.isc.heia-fr.ch/codelabs/high-vs-low-level

	Slide Number 1
	Some administrative matters
	Course content
	Introduction to Embedded Systems
	Introduction to Embedded Systems
	Applications for Embedded Systems
	Example of Embedded System: Bike Computer
	Another Example: Gasoline Automobile Engine Control Unit
	An Embedded System is more than a Processor
	Attributes of Embedded Systems
	Attributes of Embedded Systems
	From a Processor to an Embedded System
	Example of an Arm M4-MCU Architecture
	Options for Building Embedded Systems
	Benefits of Microcontroller-based Embedded Systems
	Constraints of Microcontroller-based Embedded Systems
	As a summary, why Microcontroller-based Embedded Systems?
	Internet of Things (IoT) and Embedded Systems
	Internet of Things: Why Now?
	Embedded Systems and OS
	Program structures of Embedded Systems
	Embedded systems and OS components
	Embedded Systems and RTOS
	RTOS capabilities
	RTOS overview
	A Short RTOS History
	Mbed OS overview
	Mbed OS overview
	Mbed OS overview
	Mbed OS - Security
	Mbed OS - Connectivity
	Mbed OS – Development tools
	Mbed OS – Mbed Studio
	Mbed OS – Mbed CLI
	Mbed OS - Testing
	Mbed OS – Mbed Enabled Platforms
	Mbed OS – Why C+?
	Codelabs

