
Application Note 241

ARM Compiler C Library Startup and Initialization
Document number: ARM DAI 0241B

Copyright ARM Limited 2010, 2014

Non-Confidential

2 Copyright © 2010, 2014 ARM. All rights reserved. ARM DAI 0241B
 Non-Confidential

Application Note 241
ARM Compiler C Library Startup and Initialization
Copyright © 2010, 2014 ARM Limited. All rights reserved.

Release information
The following table lists the changes made to this document.

Change history

Date Issue Change

2 December 2010 A ARM Compiler toolchain v4.1 build 561 Release

24 January 2014 B Generic document for all ARM Compiler releases

Proprietary notice
Words and logos marked with ® and ™ are registered trademarks or trademarks of ARM® in the EU
and other countries, except as otherwise stated below in this proprietary notice. Other brands and
names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this
document may be adapted or reproduced in any material form except with the prior written
permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements.
All particulars of the product and its use contained in this document are given by ARM in good faith.
However, all warranties implied or expressed, including but not limited to implied warranties of
merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or
omission in such information, or any incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality status
This document is Non-Confidential. This document may only be used and distributed in accordance
with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Feedback on this application note
If you have any comments on content then send an e-mail to errata@arm.com. Give:

• the document title
• the document number
• the page numbers to which your comments apply
• a concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

ARM web address
http://www.arm.com

mailto:errata@arm.com
http://www.arm.com/

Table of Contents

ARM DAI 0241B Copyright © 2010, 2014 ARM. All rights reserved. 3
 Non-Confidential

Table of Contents
1 Introduction .. 4

1.1 Version .. 4
1.2 Additional reading ... 4

2 Startup code ... 5

3 Entry point to the C library ... 6
3.1 __scatterload .. 6
3.2 See also .. 6

4 Functions called by __rt_entry ... 8
4.1 _platform_pre_stackheap_init .. 8
4.2 __user_setup_stackheap ... 8
4.3 _platform_post_stackheap_init ... 9
4.4 __rt_lib_init ... 9
4.5 _platform_post_lib_init .. 9
4.6 See also .. 9

5 Functions called by __rt_lib_init .. 11
5.1 _fp_init .. 11
5.2 _init_alloc .. 11
5.3 _rand_init .. 12
5.4 _get_lc_collate .. 12
5.5 _get_lc_ctype.. 12
5.6 _get_lc_monetary ... 12
5.7 _get_lc_numeric ... 12
5.8 _get_lc_time ... 12
5.9 _atexit_init ... 12
5.10 _signal_init .. 13
5.11 _fp_trap_init .. 13
5.12 _clock_init ... 13
5.13 _getenv_init .. 13
5.14 _initio .. 13
5.15 __ARM_get_argv .. 13
5.16 __alloca_initialize ... 14
5.17 __ARM_exceptions_init .. 14
5.18 __cpp_initialize__aeabi_ .. 14
5.19 See also .. 14

6 Appendix... 15

Introduction

1 Introduction
This document describes the C library startup code and the initialization functions that
might be called during the startup of an application that has been compiled using the ARM
Compiler. The document gives an overview of what the functions in the startup code do,
and why they are present. You can use this document to verify the startup code of your
application.

1.1 Version
This document describes the startup code for ARM Compiler. Functions in the startup code
might change between different releases and patches of the toolchain. This document
makes no guarantee about the continued operation of the library startup code in later
releases or patches of the toolchain.

1.2 Additional reading
This section lists publications by ARM and by third parties.

See Infocenter, http://infocenter.arm.com, for access to ARM documentation.

1.2.1 ARM publications

The following documents contain information relevant to this document:

• ARM Compiler toolchain Developing Software for ARM Processors
(ARM DUI 0471)

• ARM Compiler toolchain ARM C and C++ Libraries and Floating-Point Support
Reference (ARM DUI 0492)

• ARM Compiler toolchain Using ARM C and C++ Libraries and Floating-Point
Support (ARM DUI 0475)

• ARM Compiler toolchain Linker Reference (ARM DUI 0493).

4 Copyright © 2010, 2014 ARM. All rights reserved. ARM DAI 0241B
 Non-Confidential

http://infocenter.arm.com/

Startup code

2 Startup code
Embedded applications require an initialization sequence before the user-defined main()
function starts. This is called the startup code or boot code. The ARM C library contains
pre-compiled and pre-assembled code sections that are necessary to start an application.
When linking your application, the linker includes the necessary code, based on the
application, from the C library to create a custom startup code for the application.

Note. Your embedded application running on a target can perform other target hardware
initializations before calling the C library startup code. See Reset and Initialization in
Developing Software for ARM Processors for more information.

The startup code for one application might be different to the startup code for another
application. The document does not describe the precise startup code for any particular
user application. Also, the document does not describe how to customize the startup code
yourself. For information on how to customize the startup code, see Developing Software
for ARM Processors.

The startup code described in this document applies to the standard ARM C library. It does
not apply to the ARM C micro-library. It is also common to architectures ARMv4T and later.

ARM DAI 0241B Copyright © 2010, 2014 ARM. All rights reserved. 5
 Non-Confidential

Entry point to the C library

3 Entry point to the C library
The function __main is the entry point to the C library. Unless you change it, __main is the
default entry point to the ELF image that the ARM linker (armlink) uses when creating the
image. Figure 1 shows the functions called by __main during the C library startup.

Figure 1 Overview of the functions called during the C library startup

__rt_entry and the functions called by __rt_entry are described in Functions called by
__rt_entry.

3.1 __scatterload
Application code and data can be in a root region or a non-root region. Root regions have
the same load-time and execution-time addresses. Non-root regions have different load-
time and execution-time addresses. The root region contains a region table output by the
ARM linker.

The region table contains the addresses of the non-root code and data regions that require
initialization. The region table also contains a function pointer that indicates what
initialization is needed for the region, for example a copying, zeroing, or decompressing
function.

__scatterload goes through the region table and initializes the various execution-time
regions. The function:

• Initializes the Zero Initialized (ZI) regions to zero
• Copies or decompresses the non-root code and data region from their load-time

locations to the execute-time regions.

__main always calls this function during startup before calling __rt_entry.

3.2 See also
Using the ARM C and C++ Libraries and Floating-Point Support:

• Initialization of the execution environment and execution of the application.

ARM C and C++ Libraries and Floating-Point Support Reference:

• Thread-safe C library functions.

Developing Software for ARM Processors:

• Tailoring the image memory map to your target hardware

• Local memory setup considerations

• Application startup

6 Copyright © 2010, 2014 ARM. All rights reserved. ARM DAI 0241B
 Non-Confidential

Entry point to the C library

• Reset and initialization

• Scatter loading description file

• Root regions.

ARM DAI 0241B Copyright © 2010, 2014 ARM. All rights reserved. 7
 Non-Confidential

Functions called by __rt_entry

4 Functions called by __rt_entry
__main calls __rt_entry to initialize the stack, heap and other C library sub systems.
__rt_entry calls various initialization functions and then calls the user-level main().

This lists the functions that _rt_entry can call. The functions are listed in the order they
get called:

1. _platform_pre_stackheap_init
2. __user_setup_stackheap or setup the Stack Pointer (SP) by another method
3. _platform_post_stackheap_init
4. __rt_lib_init
5. _platform_post_lib_init
6. main()
7. exit()

The _platform_* functions are not part of the standard C library. If you define them, then
the linker places calls to them in __rt_entry.

main() is the entry point to the application at the user-level. Registers r0 and r1 contain the
arguments to main(). If main() returns, its return value is passed to exit() and the
application exits.

__rt_entry is also responsible for setting up the stack and heap. However, setting up the
stack and heap depends on the method specified by the user. The stack and heap can be
setup by any of the following methods:

• Calling __user_setup_stackheap. This also obtains the bounds of the memory
used by the heap (heap top and heap base).

• Loading the SP with the value of the symbol __initial_sp.
• Using the top of the ARM_LIB_STACK or ARM_LIB_STACKHEAP region specified in

the linker scatter file.

__rt_entry and __rt_lib_init do not exist as complete functions in the C library. Small
sections of these functions are present in several internal objects that are part of the C
library. Not all of these code sections are useful for a given user application. The linker
decides which subset of those code sections are needed for a given application, and
includes just those sections in the startup code. The linker places these sections in the
correct order to create custom __rt_entry and __rt_lib_init functions as required by
the user application.

The functions called by __rt_lib_init are described in Functions called by __rt_lib_init.

4.1 _platform_pre_stackheap_init
The standard C library does not provide this function but you can define it if you require it.
You can use this function to setup hardware for example. __rt_entry calls this function, if
you define it, before the code that initializes the stack and heap.

4.2 __user_setup_stackheap
This function enables you to setup and return the location of the initial stack and heap. The
C library does not provide this function but you can define it if you require it. __rt_entry
calls this function if you define it or if you define the legacy function
__user_initial_stackheap. If you define __user_initial_stackheap, then the C
library provides a default __user_setup_stackheap as a wrapper around your
__user_initial_stackheap function.

8 Copyright © 2010, 2014 ARM. All rights reserved. ARM DAI 0241B
 Non-Confidential

Functions called by __rt_entry

4.3 _platform_post_stackheap_init
The C library does not provide this function but you can define it if you require it. You can
use this function to setup hardware for example. __rt_entry calls this function, if you
define it, after the code that initializes the stack and heap.

4.4 __rt_lib_init
This function initializes the various C library subsystems. It initializes the referenced library
functions, initializes the locale and, if necessary, sets up argc and argv for main().
__rt_entry calls this function always during startup.

If you use the __user_setup_stackheap or __user_initial_stackheap functions to
setup the stack pointer and heap, then the start and end address of the heap memory
block are passed as arguments to __rt_lib_init in registers r0 and r1 respectively.

The function returns argc and argv in registers r0 and r1 respectively if the user-level
main() requires them.

4.5 _platform_post_lib_init
The C library does not provide this function but you can define it if you require it. You can
use this function to setup hardware for example. __rt_entry calls this function, if you
define it, after the call to __rt_lib_init and before the call to the user-level main()
function.

4.6 See also
Entry point to the C library

Developing Software for ARM Processors:

• Reset and initialization

• Application startup

• Stack pointer initialization

• Placing the stack and heap.

ARM C and C++ Libraries and Floating-Point Support Reference:

• __rt_entry

• __user_setup_stackeheap()

• __rt_stackheap_init()

• __rt_lib_init()

• __rt_lib_shutdown()

• _sys_exit()

• Legacy function __user_initial_stackheap().

Using ARM C and C++ Libraries and Floating-Point Support:

• Stack pointer initialization and heap bounds

ARM DAI 0241B Copyright © 2010, 2014 ARM. All rights reserved. 9
 Non-Confidential

Functions called by __rt_entry

• Initialization of the execution environment and execution of the application

• Legacy support for __user_initial_stackheap().

10 Copyright © 2010, 2014 ARM. All rights reserved. ARM DAI 0241B
 Non-Confidential

Functions called by __rt_lib_init

5 Functions called by __rt_lib_init
The linker includes various initialization code sections from the internal object files to
create a custom __rt_lib_int function. The linker places a function in __rt_lib_init
only if it is needed by the application.

This lists the functions that _rt_lib_init can call. The functions are listed in the order
they get called:

1. _fp_init
2. _init_alloc
3. _rand_init
4. _get_lc_collate
5. _get_lc_ctype
6. _get_lc_monetary
7. _get_lc_numeric
8. _get_lc_time
9. _atexit_init
10. _signal_init
11. _fp_trap_init
12. _clock_init
13. _getenv_init
14. _initio
15. _ARM_get_argv
16. _alloca_initialize
17. _ARM_exceptions_init
18. __cpp_initialize__aeabi_

5.1 _fp_init
This function initializes the floating-point environment by setting up the FP status word. If
the user application uses VFP hardware, the function initializes the Floating-point Status
and Control Register (FPSCR). If the application uses software VFP the function initializes
the FP status word in memory. __rt_lib_init calls this function always during startup.

How fp_init is called depends on the ARM Compiler version:

• ARM Compiler v4.1

fp_init is always called during startup.

• ARM Compiler 5

_fp_init is called during startup unless you are using both softfp and an FP
model without a status word (--fpmode={ieee_no_fenv,std,fast}). In this case,
the call to _fp_init is completely omitted.

5.2 _init_alloc
This function sets up the data structures used by malloc, free, and other related functions.
The function takes 2 parameters. The first parameter, in register r0, is the start of the heap
memory block (heapbase), and the second parameter, in register r1, is the end of the heap
memory block (heaptop). If these heap bound parameters are not passed as parameters
to __rt_lib_init, then __rt_lib_init loads them using the symbols __heap_base and
__heap_limit, or a special scatter load region, see Functions called by __rt_entry.
__rt_lib_init calls this function if the application uses the heap.

ARM DAI 0241B Copyright © 2010, 2014 ARM. All rights reserved. 11
 Non-Confidential

Functions called by __rt_lib_init

5.3 _rand_init
This function initializes the random number generator to its default starting state.
__rt_lib_init calls this function if the application uses rand().

5.4 _get_lc_collate
This function obtains a pointer to the default block of data containing settings for the
LC_COLLATE locale category. It inserts the pointer into the C library’s stored locale pointer
variable. __rt_lib_init calls this function if the application calls any function whose
behavior depends on this locale setting.

5.5 _get_lc_ctype
This function obtains a pointer to the default block of data containing settings for the
LC_CTYPE locale category. It inserts the pointer into the C library’s stored locale pointer
variable. __rt_lib_init calls this function if the application calls any function whose
behavior depends on this locale setting.

5.6 _get_lc_monetary
This function obtains a pointer to the default block of data containing settings for the
LC_MONETARY locale category. It inserts the pointer into the C library’s stored locale pointer
variable. __rt_lib_init calls this function if the application calls any function whose
behavior depends on this locale setting.

5.7 _get_lc_numeric
This function obtains a pointer to the default block of data containing settings for the
LC_NUMERIC locale category. It inserts the pointer into the C library’s stored locale pointer
variable. __rt_lib_init calls this function if the application calls any function whose
behavior depends on this locale setting.

5.8 _get_lc_time
This function obtains a pointer to the default block of data containing settings for the
LC_TIME locale category. It inserts the pointer into the C library’s stored locale pointer
variable. __rt_lib_init calls this function if the application calls any function whose
behavior depends on this locale setting.

5.9 _atexit_init
This function sets up the C library’s storage for the function pointers that are passed to
atexit(). In a multithreaded application, it also sets up the mutex that protects the storage
against concurrent accesses. __rt_lib_init calls this function if the application uses
atexit().

12 Copyright © 2010, 2014 ARM. All rights reserved. ARM DAI 0241B
 Non-Confidential

Functions called by __rt_lib_init

5.10 _signal_init
This function sets up the storage that contains the current handler for each signal number.
In a multithreaded application, it also sets up the mutex that protects this storage against
concurrent accesses. __rt_lib_init calls this function if the application uses signal().

5.11 _fp_trap_init
This function sets up the library’s storage that contains the current handler for each type of
floating-point exception. In a multithreaded application, it also sets up the mutex that
protects this storage against concurrent accesses. __rt_lib_init calls this function if the
application uses trapped floating-point exceptions, for example if you use either of the
following:

• --fpmode=ieee_full

• --fpmpde=ieee_fixed.

5.12 _clock_init
This function reads the current value of the timer used by clock(). This is stored as the
start time of the program. Subsequent calls to clock() returns the time elapsed since the
program start time. These are the default implementations of clock() and _clock_init.
You can re-implement them differently. __rt_lib_init calls this function if the application
uses clock().

5.13 _getenv_init
The standard C library does not provide this function but you can define it if you require it.
This function enables getenv() to retrieve any needed data. __rt_lib_init calls this
function if you define it.

5.14 _initio
This function sets up the stdio internal state. This includes initializing the list of open files,
and calling _sys_open() to open the three standard streams. __rt_lib_init calls this
function if the application uses stdio.

5.15 __ARM_get_argv
This function gets the argc and argv values for passing to main(). The function returns
argc and argv in registers r0 and r1 respectively. The function might return two more
arguments in registers r2 and r3. __rt_lib_init calls this function if main() is declared
with arguments.

__ARM_get_argv calls _sys_command_string to obtain the argument list as a single string.
It then breaks this string into separate strings for each word.

ARM DAI 0241B Copyright © 2010, 2014 ARM. All rights reserved. 13
 Non-Confidential

Functions called by __rt_lib_init

5.16 __alloca_initialize
This function sets up the alloca list pointer to NULL. __rt_lib_init calls this function if
the RVCT heap based alloca is used.

5.17 __ARM_exceptions_init
This function sets up the C++ exception handling state. __rt_lib_init calls this function if
the application uses C++ exceptions.

5.18 __cpp_initialize__aeabi_
This function calls the constructors of top-level C++ objects. __rt_lib_init calls this
function if the application has top-level C++ objects.

5.19 See also
Functions called by __rt_entry

Using ARM C and C++ Libraries and Floating-Point Support:

• __rt_fp_status_addr()

• Using malloc() when exploiting the C library

• Using a heap implementation from bare machine C

• Definition of locale data blocks in the C library

• C++ initialization, construction and destruction

• Initialization of the execution environment and execution of the application

• Exceptions system initialization

• Assembler macros that tailor locale functions in the C library.

ARM C and C++ Libraries and Floating-Point Support Reference:

• _getenv_init()

• getenv()

• _clock_init()

• _findlocale()

• _sys_command_string()

• __rt_lib_init.

Linker Reference:

• --ref_cpp_init, --no_ref_cpp_init.

14 Copyright © 2010, 2014 ARM. All rights reserved. ARM DAI 0241B
 Non-Confidential

Appendix

6 Appendix
This appendix provides a summary of the various functions that might be called during the
startup of an application. It also shows when the function is included in the startup code.

Table 1 Summary of startup functions

Symbol name Description Inclusion in startup code

__alloca_initialize Sets up the alloca list pointer to NULL When using heap based alloca

__ARM_exceptions_init Sets up exception handling state When using C++ exceptions

__ARM_get_argv Gets the argc and argv values for
main()

If main() is defined with arguments

_atexit_init Sets up storage for function pointers When using atexit()

_clock_init Reads current value of timer used by
clock()

When using clock()

__cpp_initialize__aeabi_ Calls top-level C++ constructors When using top-level C++ objects

_fp_init Initializes the floating-point environment Always

_fp_trap_init Sets up storage for floating-point
exception handlers

When using trapped floating-point
exceptions

_get_lc_collate Stores the pointer to the data block
containing the LC_COLLATE settings

When using functions that depend on
the collate locale setting

_get_lc_ctype Stores the pointer to the data block
containing the LC_CTYPE settings

When using functions that depend on
the ctype locale setting

_get_lc_monetary Stores the pointer to the data block
containing the LC_MONETARY settings

When using functions that depend on
the monetary locale setting

_get_lc_numeric Stores the pointer to the data block
containing the LC_NUMERIC settings

When using functions that depend on
the numeric locale setting

_get_lc_time Stores the pointer to the data block
containing the LC_TIME settings

When using functions that depend on
the time locale setting

_getenv_init Enables getenv() to initialize itself If you define _getenv_init

_init_alloc Sets up the data structures used by
malloc, free and other related functions

When using the heap

_initio Sets up the stdio internal state When using stdio

_rand_init Initializes the random number generator When using rand()

_platform_post_lib_init Enables initialization after
__rt_lib_init

If you define
_platform_post_lib_init

_platform_post_stackheap_init Enables initialization after stack
initialization

If you define
_platform_post_stackheap_init

_platform_pre_stackheap_init Enables initialization before stack
initialization

If you define
_platform_pre_stackheap_init

__rt_entry Sets up the run-time environment, and
then calls main()

Always

__rt_lib_init Calls the necessary C library initialization
functions

Always

ARM DAI 0241B Copyright © 2010, 2014 ARM. All rights reserved. 15
 Non-Confidential

Appendix

16 Copyright © 2010, 2014 ARM. All rights reserved. ARM DAI 0241B
 Non-Confidential

Table 2 Summary of startup functions (continued)

Symbol name Description Inclusion in startup code

__scatterload Copies code and data from load region to
execute region

Always

_signal_init Sets up storage for signal handlers When using signal()

_user_setup_stackheap Sets up stack and heap If you define
_user_setup_stackheap

	1 Introduction
	1.1 Version
	1.2 Additional reading
	1.2.1 ARM publications

	2 Startup code
	3 Entry point to the C library
	3.1 __scatterload
	3.2 See also

	4 Functions called by __rt_entry
	4.1 _platform_pre_stackheap_init
	4.2 __user_setup_stackheap
	4.3 _platform_post_stackheap_init
	4.4 __rt_lib_init
	4.5 _platform_post_lib_init
	4.6 See also

	5 Functions called by __rt_lib_init
	5.1 _fp_init
	5.2 _init_alloc
	5.3 _rand_init
	5.4 _get_lc_collate
	5.5 _get_lc_ctype
	5.6 _get_lc_monetary
	5.7 _get_lc_numeric
	5.8 _get_lc_time
	5.9 _atexit_init
	5.10 _signal_init
	5.11 _fp_trap_init
	5.12 _clock_init
	5.13 _getenv_init
	5.14 _initio
	5.15 __ARM_get_argv
	5.16 __alloca_initialize
	5.17 __ARM_exceptions_init
	5.18 __cpp_initialize__aeabi_
	5.19 See also

	6 Appendix

